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Abstract—This paper presents a no-reference image blur metric that is
based on the study of human blur perception for varying contrast values.
The metric utilizes a probabilistic model to estimate the probability of de-
tecting blur at each edge in the image, and then the information is pooled by
computing the cumulative probability of blur detection (CPBD). The per-
formance of the metric is demonstated by comparing it with existing no-ref-
erence sharpness/blurriness metrics for various publicly available image
databases.

Index Terms—Blur detection, blur metric, no-reference, objective, per-
ceptual, sharpness metric, visual quality.

I. INTRODUCTION

Multimedia content has become a very popular means of entertain-
ment and communication. This has resulted in great advancements in
compression and transmission techniques. However, impairments are
often introduced along the several stages of processing and communi-
cation [1]. The visibility of these impairments have a drastic effect on
the Quality of Experience (QoE) of the consumers. Hence, quality as-
sessment techniques are necessary in order to measure the perceived
quality of the multimedia content [1].

Owing to the cost, complexity, and infeasibility of real-time appli-
cations associated with subjective quality assessment techniques, it has
become important to develop reliable objective quality metrics. Hence,
recently, there has been an increasing interest from the research com-
munity and also industry towards developing objective quality assess-
ment techniques for multimedia applications and products [1].

Based on the amount of reference information needed, the objec-
tive quality assessment metrics can be classified into full-reference, re-
duced-reference and no-reference metrics [1]. To obtain a quality score,
full-reference metrics utilize the original reference information and re-
duced-reference metrics utilize features extracted from the original ref-
erence information. In contrast, no-reference metrics do not require any
reference information and are the most useful in applications where
the reference is not available. However, they are equally challenging to
design.

This paper deals with no-reference image quality assessment tar-
geted towards blur distortions. Blurring occurs in an image due to
the loss of high frequency information which could be caused due to
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various factors, such as acquisition, processing and compression. The
sharpness/blurriness metric can also be combined with other metrics
to assess the overall quality of images. Several objective no-reference
sharpness/blurriness metrics have been proposed in the literature and
are analyzed in [2]. In [2], it was shown that the existing blur metrics
cannot predict well the relative blurriness in images with different con-
tents. The metric proposed in [2] could predict the relative blurriness in
images better than existing blur metrics, but it does not correlate well
with images having nonuniform saliency content. The metric proposed
in [3] tries to improve the performance of [2] by incorporating a visual
attention model, such that the areas in the images which are most likely
noticed by humans are given more weight than the others. However,
the metric proposed in [3] does not achieve significant improvement
over the method in [2]. More recently, Hassen et al. [4] proposed a
multiscale sharpness metric based on the local phase coherence (LPC)
of complex wavelet coefficients. The computed LPC values are sorted
and a weighted averaging method is used to obtain a single sharpness
index. The weights are selected such that a higher weight is assigned
to the higher LPC values which correspond to sharper image regions.
This is done to give emphasis to the sharpest regions in the image in
order to consider the situations, for example, when the foreground is
sharp and the background is blurred.

In this paper, we build on the work of [2] and propose an improved
no-reference blur metric which utilizes the concept of just noticeable
blur (JNB) together with a cumulative probability of blur detection
(CPBD). A probabilistic framework is developed based on the sen-
sitivity of human blur perception at different contrasts. Utilizing this
framework, the probability of detecting blur at each edge in an image is
estimated. The blur perception information at each edge is then pooled
over the entire image to obtain a final quality score by evaluating the
cumulative probability of blur detection (CPBD).

The paper is organized as follows. Section II describes the pro-
posed no-reference blur metric. Performance results are presented in
Section III. A conclusion is given in Section IV.

II. PROPOSED NO-REFERENCE OBJECTIVE BLUR METRIC

This section describes the proposed no-reference objective blurri-
ness metric. The metric proposed in this work is based on the cumula-
tive probability of blur detection (CPBD) and, as shown in Section III,
it exhibits consistently a good performance across blur types (Gaussian
blur and JPEG2000 blur) and across databases as compared to existing
sharpness/blur metrics.

As discussed in [2], for a given contrast � , the probability of de-
tecting blur takes the form of a psychometric function which is mod-
eled as an exponential given by
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where ����� is the measured width of the edge ��, �������� is the
“just noticeable blur” (JNB) width, which depends on the local contrast
� in the neighborhood of edge ��, and � is a parameter whose value
is obtained by means of least squares fitting. The JNB width ���� at
various contrasts can be modeled as [2]:
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Fig. 1. Block diagram summarizing the computation of the proposed CPBD blur metric.

In (1), at the the JNB, ����� � ��������, which corresponds to the
probability of blur detection ����� � ���� � ���.

Natural images consist of either flat regions with uniform intensity
values or regions containing edges and texture information. When hu-
mans view an image, the information present in the image is pooled in
a certain manner such that they can come up with an overall perception
of its quality. Equation (1) provides the probability of blur detection for
a single edge. But, since natural images consist of a large number of
edges, it is important to devise a method for predicting how the infor-
mation obtained from single edges can be pooled together to get a single
quality score. In [2], pooling over edge pixels in individual blocks with
significant edge content (referred to as edge blocks) and then over all
the considered edge blocks, is accomplished using a Minkowski metric
based on a probability summation model [5].

The metric of [2] is based on a model assuming that the blur impair-
ment increases when ����� increases. However, the metric of [2] ig-
nores the fact that the blur is not likely to be perceived when it is below
the JNB. This work presents an improved metric that exploits this fact
by considering the value of ����� relative to ����. In the proposed
metric, the pooling is based on the CPBD, which is obtained from the
normalized histogram of the probability of blur detection of the pro-
cessed edges in the entire image. The CPBD corresponds to the per-
centage of edges at which the probability of blur detection is below the
just noticeable blur detection probability ����� � ���� and, hence,
to the percentage of edges at which blur is not likely to be detected.

A block diagram summarizing the computation of the proposed
CPBD blur metric is shown in Fig. 1. Edge detection is first performed
on the image. In the current implementation, only horizontal edges
are detected as in [6]. The metric was also tested by including both
horizontal and vertical edges. From the obtained results [7], it was
established that including both vertical and horizontal edges in the
calculations did not provide any significant improvement in the results
for Gaussian-blurred and JPEG2000-compressed images. Hence, only
horizontal edges are considered. The image is then divided into 64x64
blocks, approximating the size of foveal regions for a viewing distance
of 60 cm and a display resolution of 31.5 pixels/cm, which correspond
to a display visual resolution of 32.9 pixels per degree [8]. Depending
on the edge information in each block, the blocks are then classified
as edge blocks or nonedge blocks. The criterion to be classified as

edge blocks is that the number of edges detected in the block should at
least be 0.2% of the total number of pixels in the block [9]. The blocks
characterized as nonedge blocks are not processed further. For each
edge pixel �� in an edge block, the corresponding edge width ����� is
determined as in [6], and the JNB edge width �������� is obtained
depending on the local contrast C of the block using (2). The proba-
bility of detecting blur at the edge pixel ��, ��������� � �����, is
then computed by using (1). A normalized histogram of blur detection
probabilities (histogram of �����/Total number of processed edge
pixels) is obtained, which gives the probability density function of
�����. Finally, from the probability density function of �����, the
cumulative probability of blur detection, which is the proposed metric,
is calculated as

��	
 �� ������ � �����

�

� ��

� ��

� ������� (3)

where � ������� denotes the value of the probability distribution
function at a given �����.

The above metric is based on the fact that, at the JNB,
����� � ��������, which corresponds to the probability of blur
detection ����� � ���� � ���. Thus, for a given edge ��, when
����� � ����, the blur is considered to be not detected at the edge.
As an image is increasingly blurred, the spread of the edges increases,
which results in a higher value of ����� and, hence, in a higher
probability of blur detection at the considered edge. As mentioned
earlier, the proposed CPBD blur metric, given by (3), corresponds
to the percentage of edges at which the probability of blur detection
is below ���� and, hence, to the percentage of edges at which blur
cannot be detected (in a probabilistic sense). Hence, a higher metric
value represents a sharper image.

III. PERFORMANCE RESULTS

Here, performance results for the proposed CPBD blur metric are
presented. First, the test sets taken from various publicly available
databases, that are used for the metric evaluation, are described.
Then, the performance of the proposed metric is tested using the
described test sets which consist of various Gaussian blurred and
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JPEG2000-compressed images. Results are presented to show how
well the proposed metric correlates with the subjective scores as
compared to the existing no-reference sharpness/blur metrics.1

A. Test Sets

To test the performance of the metric, Gaussian-blurred and
JPEG2000-compressed images from the LIVE [10], TID2008 [11],
IVC [12], and Toyama [13] databases are used.

The LIVE database [10] consists of 29 24-b/pixel RGB color images
(typically 768� 512). The images are distorted using different dis-
tortion types: JPEG2000, JPEG, Gaussian blur in RGB components,
white noise in the RGB components, and bit errors in the JPEG2000
bitstream when transmitted over a simulated fast-fading Rayleigh
channel. The subjective experiments for the LIVE database were
conducted such that each distortion type was evaluated by different
subjects in different experiments. These experiments used the same
equipment and viewing conditions. Each image was rated by about
20–29 subjects. The subjects were asked to rate the images on a
continuous linear scale which was divided into five different regions
namely, “Bad,” “Poor,” “Fair,” “Good,” and “Excellent.” The raw
scores for each subject were converted to difference scores and then
z-scores. The scores were then scaled and shifted to a range of 1 to
100. Then the difference mean opinion score (DMOS) for each image
was calculated. All of the Gaussian-blurred images (174 images) and
all of the JPEG2000-compressed images (227 images) from the LIVE
database are used in our experiments.

The TID2008 database [11] consists of 25 reference images (typi-
cally 512� 384) and 1700 distorted images. The images are distorted
using 17 types of distortions, including but not limited to JPEG2000,
Gaussian blur, JPEG, impulse noise and mean shift. A different
methodology was used to conduct subjective tests for the TID 2008
database. A reference image at the bottom of the screen and a pair of
distorted images at the top of the screen were simultaneously presented
to the test subjects. Each subject was then asked to select a distorted
image that differs less from the reference image. After the first selec-
tion, two different (new) distorted images appear in the upper part of
screen. Each observer was asked to carry out the subjective test for
only one reference image in one experiment. Each observer was given
preliminary instructions and was trained on a set of distorted images
before carrying out the actual experiments. The evaluation scale used
was from 0 to 9 and the final MOS for each image was obtained by
averaging all quality evaluations for a given image. The MOS was
obtained from the results of 838 experiments carried out by a total of
838 observers from three different countries (251 experiments have
been carried out in Finland, 150 in Italy, and 437 in Ukraine). Totally,
the 838 observers have performed 256428 comparisons of visual
quality of distorted images or 512 856 evaluations of relative visual
quality in image pairs. All of the Gaussian-blurred natural images
(96 images) and all of the JPEG2000-compressed natural images (96
images) from the TID2008 database are used in our experiments.

The IVC database [12] consists of ten reference images (typically
512� 512) and 235 distorted images. The images are distorted using
different distortion types: JPEG, JPEG2000, locally adaptive resolu-
tion (LAR) coding, and blurring. Fifteen subjects participated in the
subjective tests. The viewing distance was set to be six times the pic-
ture’s height. The tests were conducted using a double stimulus im-
pairment scale method (DSIS), in which both original and distorted
pictures were shown sequentially. The subjects were asked to rate the
distortion they noticed in the distorted pictures with respect to the orig-
inal on a five point scale having adjectives namely, 5—imperceptible,

1The source code for the proposed CPBD metric is available at http://ivulab.
asu.edu/Quality.

4—perceptible but not annoying, 3—slightly annoying, 2—annoying
and 1—very annoying. The mean opinion scores were then calculated
after outlier removal. In our experiments, all of the Gaussian-blurred
images (24 images) and all pf the JPEG2000-compressed images (60
images) from the IVC database are used.

The Toyama database [13] consists of 14 reference images (typi-
cally 768� 512) and 168 distorted images. The images are distorted
using JPEG and JPEG2000 compression. Sixteen subjects participated
in the subjective tests. The viewing distance was set to be four times
the picture’s height. The tests were conducted using the single stimulus
absolute category rating (SSACR) method. The subjects were asked
to rate the images on a discrete five-point quality scale namely, bad
(1), poor (2), fair (3), good (4), and excellent (5). The test presenta-
tion order was randomized. The scores were then converted into dif-
ference scores and, finally, the difference mean opinion scores were
computed for each image after outlier rejection. In our experiments, all
the JPEG2000-compressed images (98 images) from the Toyoma data-
base are used.

B. Performance Results for the CPBD Metric

Here, results are presented to illustrate the performance of the
proposed CPBD metric. Fig. 2 illustrates the behavior of the proposed
CPBD blur metric for the 512� 768 Sailing1 image which was ob-
tained from the UT Austin LIVE database [10]. Fig. 2(a)–(c) show the
blurred versions of the Sailing1 image using a circularly symmetric
2-D Gaussian kernel having a standard deviation of 0, 0.9, and 1.7,
respectively. Fig. 2(d)–(f) show the probability distribution functions
(PDFs) � ������� corresponding to Fig. 2(a)–(c), respectively.
The corresponding cumulative distribution functions are shown in
Fig. 2(g)–(i), respectively. From Fig. 2(g)–(i), it can be seen that, as
the amount of blur increases, the proposed CPBD metric, which is
equal to � ������ � �����, decreases as expected. In the proposed
implementation, the computed ����� values are first quantized using
a scalar quantizer with a step size of 0.01 and the quantized values
are used for computing the PDFs � ������� and the proposed CPBD
metric as in (3).

As the blurriness in the image increases, the proposed CPBD metric
is expected to monotonically decrease. Fig. 3 shows the behavior of the
proposed metric for blurred versions of the 512� 768 Bikes image.
These images were obtained from the LIVE database [10]. It can be
noted that the metric behaves as expected.

To measure how well the proposed metric correlates with the pro-
vided subjective scores for the various databases, the authors followed
the suggestions of the VQEG report [14] where several evaluation met-
rics are proposed. To account for the quality rating compression at the
extremes of the test range, a four parameter logistic function as sug-
gested in [14], is used.

The used logistic function is given by

���� �
�� � ��

� � �	� �� ��� �

� �� (4)

where ��, ��, ��, and �� are the model parameters, ���� is the
predicted MOS, and �� is the proposed metric for image �. The
values of ��, ��, ��, and �� are first obtained using a best fit to the
corresponding subjective MOS scores, and are then used to find the
predicted�������� � values using (4). The predicted MOS values
are then used in calculating the performance measures including PCC
(Pearson correlation coefficient, indicates the prediction accuracy),
SROCC (Spearman rank-order correlation coefficient, indicates the
prediction monotonicity), RMSE (root mean squared prediction error),
MAE (mean absolute prediction error) and OR (outlier ratio, indicates
consistency). Note that, for a good metric, the values of the Pearson
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Fig. 2. Effect of blurring on the probability distribution function and the cumulative probability distribution function (CDF) of the localized blur detection prob-
abilities � . (a) Original 512� 768 Sailing1 image. (b) Image blurred using a 2-D Gaussian kernel having � � ���. (c) Image blurred using a 2-D Gaussian
kernel having � � ���. (d) � �� � of the image in (a). (e) � �� � of the image in (b). (f) � �� � of the image in (c). (g) CDF of � for the
image in (a). (h) CDF of � for the image in (b). (i) CDF of � for the image in (c).

Fig. 3. Monotonic decreasing behavior of the proposed CPBD metric for in-
creasing blur (512� 768 Bikes image).

and Spearman correlation coefficients should be high and the values
of RMSE, MAE, and OR should be low.

Tables I–IV summarize the results of the proposed metric, along
with the metrics proposed in [2] and [6], and the more recent LPC-SI

metric proposed in [4], for the Gaussian-blurred and JPEG-2000
compressed images obtained from the LIVE, TID2008, IVC, and
Toyama databases, respectively. In addition to the recent LPC-SI
metric of [4], the metrics in [2] and [6] were chosen for comparison
because these blur metrics perform better as compared to other
existing blur metrics as discussed in [2]. From Tables I–IV, it can be
observed that, while the proposed CPBD metric has a performance
that is close to the recent competitive LPC-SI metric of [4] for
Gaussian blur, the proposed CPBD metric significantly outperforms
the LPC-SI metric [4] for JPEG2000 blur for all databases. In fact,
the obtained results show that the LPC-SI metric [4] exhibits a low
correlation for JPEG-2000-compressed images for all the databases,
and it even results in a negative correlation coefficient for the
JPEG2000-compressed images of the Toyama database (Table IV).
In addition, the obtained results indicate that the proposed CPBD
metric outperforms the other existing state-of-the-art metrics for
both Gaussian-blurred and JPEG2000-compressed images across all
databases.

It is worth indicating that, as shown in Tables I–IV, the tested met-
rics exhibit differences in performance across different databases. In
[15], the authors analyze the impact of different subjective databases,
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TABLE I
EVALUATION OF THE PROPOSED CPBD METRIC PERFORMANCE W.R.T. DMOS SCORES FOR THE LIVE DATABASE

TABLE II
EVALUATION OF THE PROPOSED CPBD METRIC PERFORMANCE FOR THE TID2008 DATABASE

TABLE III
EVALUATION OF THE PROPOSED CPBD METRIC PERFORMANCE FOR THE IVC DATABASE

TABLE IV
EVALUATION OF THE PROPOSED CPBD METRIC PERFORMANCE FOR THE TOYAMA DATABASE

including the LIVE, IVC, and Toyoma databases, on the performance
of image quality metrics. From the experiments, it is noted in [15] that
the performance of the image quality metrics is quite different across
databases, and that this difference in performance can be attributed
to the differences in contents, distortions, and quality range across
databases. For example, the low-quality images in the LIVE database
are significantly more degraded as compared to the low-quality images
in the other databases under consideration. Despite this, the results
obtained herein (Tables I–IV) show that the proposed metric achieves
consistently a good performance across blur types (Gaussian blur
and JPEG2000 blur) and across databases as compared to existing
sharpness/blur metrics.

IV. CONCLUSION

In this work, a blur metric is proposed based on the CPBD. It involves
edge detection followed by estimating the probability of detecting blur
at the detected edges. Then a probability density function for the ob-
tained probabilities is calculated from which the final cumulative prob-
ability of blur detection is obtained. It is shown that the proposed metric
exhibits consistently a good performance across blur types (Gaussian
blur and JPEG2000 blur) and across databases as compared with ex-
isting sharpness/blur metrics.

Possible directions of research include extending the metric for as-
sessing blur in videos and 3-D visual content by considering additional
factors such as temporal and depth effects on blur perception.
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Nonlocal Means With Dimensionality Reduction and
SURE-Based Parameter Selection

Dimitri Van De Ville, Member, IEEE, and Michel Kocher

Abstract—Nonlocal means (NLM) is an effective denoising method that
applies adaptive averaging based on similarity between neighborhoods in
the image. An attractive way to both improve and speed-up NLM is by
first performing a linear projection of the neighborhood. One particular
example is to use principal components analysis (PCA) to perform dimen-
sionality reduction. Here, we derive Stein’s unbiased risk estimate (SURE)
for NLM with linear projection of the neighborhoods. The SURE can then
be used to optimize the parameters by a search algorithm or we can con-
sider a linear expansion of multiple NLMs, each with a fixed parameter
set, for which the optimal weights can be found by solving a linear system of
equations. The experimental results demonstrate the accuracy of the SURE
and its successful application to tune the parameters for NLM.

Index Terms—Linear transforms, nonlocal means (NLM), principal com-
ponent analysis (PCA), Stein’s unbiased risk estimate.

I. INTRODUCTION

Learning from neighborhoods has become an important and
powerful data-driven approach for various applications in image
processing. Most notably, the nonlocal means (NLM) [1] algorithm
applies adaptive averaging based on similar neighborhoods in a
search region. Various methods have been proposed to accelerate the
initial approach using preselection of the contributing neighborhoods
based on average value and gradient [2], average and variance [3] or
higher-order statistical moments [4], cluster tree arrangement [5], and
[6], [7]. The computation of the distance measure between different
neighborhoods itself can be optimized using the fast Fourier transform
[8], a moving average filter [9], [10], early termination of the search
[11], or by reducing redundant comparisons [12].

Variations of the NLM algorithm have also been proposed to
improve the denoising performance; e.g., adaptive neighborhoods
[13], iterative application [5], combination with kernel regression [14]
and spectral analysis [15], and other similarity measures based on
principal component analysis (PCA) [6], [16] or rotation invariance
[17]. The smoothing parameter that determines the contributions of
the patches has been locally optimized using Mallow’s �� statistic
[18]. The most evolved version of the nonlocal principle is probably
BM3D [19], which further processes the selected neighborhoods and
gives high quality results.

The combination of NLM with dimensionality reduction methods
such as PCA [6], [16] and SVD [7] has gained increased interest since
the advantages are twofold. First, the computational complexity is
highly reduced. Second, measuring the distance between neighbor-
hoods in a lower-dimensional subspace improves robustness to noise;
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