123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- """
- SAM model interface.
- This module provides an interface to the Segment Anything Model (SAM) from Ultralytics, designed for real-time image
- segmentation tasks. The SAM model allows for promptable segmentation with unparalleled versatility in image analysis,
- and has been trained on the SA-1B dataset. It features zero-shot performance capabilities, enabling it to adapt to new
- image distributions and tasks without prior knowledge.
- Key Features:
- - Promptable segmentation
- - Real-time performance
- - Zero-shot transfer capabilities
- - Trained on SA-1B dataset
- """
- from pathlib import Path
- from ultralytics.engine.model import Model
- from ultralytics.utils.torch_utils import model_info
- from .build import build_sam
- from .predict import Predictor
- class SAM(Model):
- """
- SAM (Segment Anything Model) interface class.
- SAM is designed for promptable real-time image segmentation. It can be used with a variety of prompts such as
- bounding boxes, points, or labels. The model has capabilities for zero-shot performance and is trained on the SA-1B
- dataset.
- """
- def __init__(self, model="sam_b.pt") -> None:
- """
- Initializes the SAM model with a pre-trained model file.
- Args:
- model (str): Path to the pre-trained SAM model file. File should have a .pt or .pth extension.
- Raises:
- NotImplementedError: If the model file extension is not .pt or .pth.
- """
- if model and Path(model).suffix not in {".pt", ".pth"}:
- raise NotImplementedError("SAM prediction requires pre-trained *.pt or *.pth model.")
- super().__init__(model=model, task="segment")
- def _load(self, weights: str, task=None):
- """
- Loads the specified weights into the SAM model.
- Args:
- weights (str): Path to the weights file.
- task (str, optional): Task name. Defaults to None.
- """
- self.model = build_sam(weights)
- def predict(self, source, stream=False, bboxes=None, points=None, labels=None, **kwargs):
- """
- Performs segmentation prediction on the given image or video source.
- Args:
- source (str): Path to the image or video file, or a PIL.Image object, or a numpy.ndarray object.
- stream (bool, optional): If True, enables real-time streaming. Defaults to False.
- bboxes (list, optional): List of bounding box coordinates for prompted segmentation. Defaults to None.
- points (list, optional): List of points for prompted segmentation. Defaults to None.
- labels (list, optional): List of labels for prompted segmentation. Defaults to None.
- Returns:
- (list): The model predictions.
- """
- overrides = dict(conf=0.25, task="segment", mode="predict", imgsz=1024)
- kwargs.update(overrides)
- prompts = dict(bboxes=bboxes, points=points, labels=labels)
- return super().predict(source, stream, prompts=prompts, **kwargs)
- def __call__(self, source=None, stream=False, bboxes=None, points=None, labels=None, **kwargs):
- """
- Alias for the 'predict' method.
- Args:
- source (str): Path to the image or video file, or a PIL.Image object, or a numpy.ndarray object.
- stream (bool, optional): If True, enables real-time streaming. Defaults to False.
- bboxes (list, optional): List of bounding box coordinates for prompted segmentation. Defaults to None.
- points (list, optional): List of points for prompted segmentation. Defaults to None.
- labels (list, optional): List of labels for prompted segmentation. Defaults to None.
- Returns:
- (list): The model predictions.
- """
- return self.predict(source, stream, bboxes, points, labels, **kwargs)
- def info(self, detailed=False, verbose=True):
- """
- Logs information about the SAM model.
- Args:
- detailed (bool, optional): If True, displays detailed information about the model. Defaults to False.
- verbose (bool, optional): If True, displays information on the console. Defaults to True.
- Returns:
- (tuple): A tuple containing the model's information.
- """
- return model_info(self.model, detailed=detailed, verbose=verbose)
- @property
- def task_map(self):
- """
- Provides a mapping from the 'segment' task to its corresponding 'Predictor'.
- Returns:
- (dict): A dictionary mapping the 'segment' task to its corresponding 'Predictor'.
- """
- return {"segment": {"predictor": Predictor}}
|