123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import math
- from itertools import product
- from typing import Any, Generator, List, Tuple
- import numpy as np
- import torch
- def is_box_near_crop_edge(
- boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
- ) -> torch.Tensor:
- """Return a boolean tensor indicating if boxes are near the crop edge."""
- crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
- orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
- boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
- near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
- near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
- near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
- return torch.any(near_crop_edge, dim=1)
- def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
- """Yield batches of data from the input arguments."""
- assert args and all(len(a) == len(args[0]) for a in args), "Batched iteration must have same-size inputs."
- n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
- for b in range(n_batches):
- yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
- def calculate_stability_score(masks: torch.Tensor, mask_threshold: float, threshold_offset: float) -> torch.Tensor:
- """
- Computes the stability score for a batch of masks.
- The stability score is the IoU between the binary masks obtained by thresholding the predicted mask logits at high
- and low values.
- Notes:
- - One mask is always contained inside the other.
- - Save memory by preventing unnecessary cast to torch.int64
- """
- intersections = (masks > (mask_threshold + threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
- unions = (masks > (mask_threshold - threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
- return intersections / unions
- def build_point_grid(n_per_side: int) -> np.ndarray:
- """Generate a 2D grid of evenly spaced points in the range [0,1]x[0,1]."""
- offset = 1 / (2 * n_per_side)
- points_one_side = np.linspace(offset, 1 - offset, n_per_side)
- points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
- points_y = np.tile(points_one_side[:, None], (1, n_per_side))
- return np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
- def build_all_layer_point_grids(n_per_side: int, n_layers: int, scale_per_layer: int) -> List[np.ndarray]:
- """Generate point grids for all crop layers."""
- return [build_point_grid(int(n_per_side / (scale_per_layer**i))) for i in range(n_layers + 1)]
- def generate_crop_boxes(
- im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float
- ) -> Tuple[List[List[int]], List[int]]:
- """
- Generates a list of crop boxes of different sizes.
- Each layer has (2**i)**2 boxes for the ith layer.
- """
- crop_boxes, layer_idxs = [], []
- im_h, im_w = im_size
- short_side = min(im_h, im_w)
- # Original image
- crop_boxes.append([0, 0, im_w, im_h])
- layer_idxs.append(0)
- def crop_len(orig_len, n_crops, overlap):
- """Crops bounding boxes to the size of the input image."""
- return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
- for i_layer in range(n_layers):
- n_crops_per_side = 2 ** (i_layer + 1)
- overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
- crop_w = crop_len(im_w, n_crops_per_side, overlap)
- crop_h = crop_len(im_h, n_crops_per_side, overlap)
- crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
- crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
- # Crops in XYWH format
- for x0, y0 in product(crop_box_x0, crop_box_y0):
- box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
- crop_boxes.append(box)
- layer_idxs.append(i_layer + 1)
- return crop_boxes, layer_idxs
- def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
- """Uncrop bounding boxes by adding the crop box offset."""
- x0, y0, _, _ = crop_box
- offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
- # Check if boxes has a channel dimension
- if len(boxes.shape) == 3:
- offset = offset.unsqueeze(1)
- return boxes + offset
- def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
- """Uncrop points by adding the crop box offset."""
- x0, y0, _, _ = crop_box
- offset = torch.tensor([[x0, y0]], device=points.device)
- # Check if points has a channel dimension
- if len(points.shape) == 3:
- offset = offset.unsqueeze(1)
- return points + offset
- def uncrop_masks(masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int) -> torch.Tensor:
- """Uncrop masks by padding them to the original image size."""
- x0, y0, x1, y1 = crop_box
- if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
- return masks
- # Coordinate transform masks
- pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
- pad = (x0, pad_x - x0, y0, pad_y - y0)
- return torch.nn.functional.pad(masks, pad, value=0)
- def remove_small_regions(mask: np.ndarray, area_thresh: float, mode: str) -> Tuple[np.ndarray, bool]:
- """Remove small disconnected regions or holes in a mask, returning the mask and a modification indicator."""
- import cv2 # type: ignore
- assert mode in {"holes", "islands"}, f"Provided mode {mode} is invalid"
- correct_holes = mode == "holes"
- working_mask = (correct_holes ^ mask).astype(np.uint8)
- n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
- sizes = stats[:, -1][1:] # Row 0 is background label
- small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
- if not small_regions:
- return mask, False
- fill_labels = [0] + small_regions
- if not correct_holes:
- # If every region is below threshold, keep largest
- fill_labels = [i for i in range(n_labels) if i not in fill_labels] or [int(np.argmax(sizes)) + 1]
- mask = np.isin(regions, fill_labels)
- return mask, True
- def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
- """
- Calculates boxes in XYXY format around masks.
- Return [0,0,0,0] for an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
- """
- # torch.max below raises an error on empty inputs, just skip in this case
- if torch.numel(masks) == 0:
- return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
- # Normalize shape to CxHxW
- shape = masks.shape
- h, w = shape[-2:]
- masks = masks.flatten(0, -3) if len(shape) > 2 else masks.unsqueeze(0)
- # Get top and bottom edges
- in_height, _ = torch.max(masks, dim=-1)
- in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
- bottom_edges, _ = torch.max(in_height_coords, dim=-1)
- in_height_coords = in_height_coords + h * (~in_height)
- top_edges, _ = torch.min(in_height_coords, dim=-1)
- # Get left and right edges
- in_width, _ = torch.max(masks, dim=-2)
- in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
- right_edges, _ = torch.max(in_width_coords, dim=-1)
- in_width_coords = in_width_coords + w * (~in_width)
- left_edges, _ = torch.min(in_width_coords, dim=-1)
- # If the mask is empty the right edge will be to the left of the left edge.
- # Replace these boxes with [0, 0, 0, 0]
- empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
- out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
- out = out * (~empty_filter).unsqueeze(-1)
- # Return to original shape
- return out.reshape(*shape[:-2], 4) if len(shape) > 2 else out[0]
|