123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import torch
- from ultralytics.data import YOLODataset
- from ultralytics.data.augment import Compose, Format, v8_transforms
- from ultralytics.models.yolo.detect import DetectionValidator
- from ultralytics.utils import colorstr, ops
- __all__ = ("RTDETRValidator",) # tuple or list
- class RTDETRDataset(YOLODataset):
- """
- Real-Time DEtection and TRacking (RT-DETR) dataset class extending the base YOLODataset class.
- This specialized dataset class is designed for use with the RT-DETR object detection model and is optimized for
- real-time detection and tracking tasks.
- """
- def __init__(self, *args, data=None, **kwargs):
- """Initialize the RTDETRDataset class by inheriting from the YOLODataset class."""
- super().__init__(*args, data=data, **kwargs)
- # NOTE: add stretch version load_image for RTDETR mosaic
- def load_image(self, i, rect_mode=False):
- """Loads 1 image from dataset index 'i', returns (im, resized hw)."""
- return super().load_image(i=i, rect_mode=rect_mode)
- def build_transforms(self, hyp=None):
- """Temporary, only for evaluation."""
- if self.augment:
- hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0
- hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0
- transforms = v8_transforms(self, self.imgsz, hyp, stretch=True)
- else:
- # transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scaleFill=True)])
- transforms = Compose([])
- transforms.append(
- Format(
- bbox_format="xywh",
- normalize=True,
- return_mask=self.use_segments,
- return_keypoint=self.use_keypoints,
- batch_idx=True,
- mask_ratio=hyp.mask_ratio,
- mask_overlap=hyp.overlap_mask,
- )
- )
- return transforms
- class RTDETRValidator(DetectionValidator):
- """
- RTDETRValidator extends the DetectionValidator class to provide validation capabilities specifically tailored for
- the RT-DETR (Real-Time DETR) object detection model.
- The class allows building of an RTDETR-specific dataset for validation, applies Non-maximum suppression for
- post-processing, and updates evaluation metrics accordingly.
- Example:
- ```python
- from ultralytics.models.rtdetr import RTDETRValidator
- args = dict(model='rtdetr-l.pt', data='coco8.yaml')
- validator = RTDETRValidator(args=args)
- validator()
- ```
- Note:
- For further details on the attributes and methods, refer to the parent DetectionValidator class.
- """
- def build_dataset(self, img_path, mode="val", batch=None):
- """
- Build an RTDETR Dataset.
- Args:
- img_path (str): Path to the folder containing images.
- mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
- batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
- """
- return RTDETRDataset(
- img_path=img_path,
- is_train_on_platform=self.args.is_train_on_platform,
- imgsz=self.args.imgsz,
- batch_size=batch,
- augment=False, # no augmentation
- hyp=self.args,
- rect=False, # no rect
- cache=self.args.cache or None,
- prefix=colorstr(f"{mode}: "),
- data=self.data,
- )
- def postprocess(self, preds):
- """Apply Non-maximum suppression to prediction outputs."""
- if not isinstance(preds, (list, tuple)): # list for PyTorch inference but list[0] Tensor for export inference
- preds = [preds, None]
- bs, _, nd = preds[0].shape
- bboxes, scores = preds[0].split((4, nd - 4), dim=-1)
- bboxes *= self.args.imgsz
- outputs = [torch.zeros((0, 6), device=bboxes.device)] * bs
- for i, bbox in enumerate(bboxes): # (300, 4)
- bbox = ops.xywh2xyxy(bbox)
- score, cls = scores[i].max(-1) # (300, )
- # Do not need threshold for evaluation as only got 300 boxes here
- # idx = score > self.args.conf
- pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1) # filter
- # Sort by confidence to correctly get internal metrics
- pred = pred[score.argsort(descending=True)]
- outputs[i] = pred # [idx]
- return outputs
- def _prepare_batch(self, si, batch):
- """Prepares a batch for training or inference by applying transformations."""
- idx = batch["batch_idx"] == si
- cls = batch["cls"][idx].squeeze(-1)
- bbox = batch["bboxes"][idx]
- ori_shape = batch["ori_shape"][si]
- imgsz = batch["img"].shape[2:]
- ratio_pad = batch["ratio_pad"][si]
- if len(cls):
- bbox = ops.xywh2xyxy(bbox) # target boxes
- bbox[..., [0, 2]] *= ori_shape[1] # native-space pred
- bbox[..., [1, 3]] *= ori_shape[0] # native-space pred
- return {"cls": cls, "bbox": bbox, "ori_shape": ori_shape, "imgsz": imgsz, "ratio_pad": ratio_pad}
- def _prepare_pred(self, pred, pbatch):
- """Prepares and returns a batch with transformed bounding boxes and class labels."""
- predn = pred.clone()
- predn[..., [0, 2]] *= pbatch["ori_shape"][1] / self.args.imgsz # native-space pred
- predn[..., [1, 3]] *= pbatch["ori_shape"][0] / self.args.imgsz # native-space pred
- return predn.float()
|