123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import os
- from pathlib import Path
- import cv2
- import numpy as np
- import torch
- from PIL import Image
- from ultralytics.utils import TQDM, checks
- class FastSAMPrompt:
- """
- Fast Segment Anything Model class for image annotation and visualization.
- Attributes:
- device (str): Computing device ('cuda' or 'cpu').
- results: Object detection or segmentation results.
- source: Source image or image path.
- clip: CLIP model for linear assignment.
- """
- def __init__(self, source, results, device="cuda") -> None:
- """Initializes FastSAMPrompt with given source, results and device, and assigns clip for linear assignment."""
- if isinstance(source, (str, Path)) and os.path.isdir(source):
- raise ValueError("FastSAM only accepts image paths and PIL Image sources, not directories.")
- self.device = device
- self.results = results
- self.source = source
- # Import and assign clip
- try:
- import clip
- except ImportError:
- checks.check_requirements("git+https://github.com/ultralytics/CLIP.git")
- import clip
- self.clip = clip
- @staticmethod
- def _segment_image(image, bbox):
- """Segments the given image according to the provided bounding box coordinates."""
- image_array = np.array(image)
- segmented_image_array = np.zeros_like(image_array)
- x1, y1, x2, y2 = bbox
- segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2]
- segmented_image = Image.fromarray(segmented_image_array)
- black_image = Image.new("RGB", image.size, (255, 255, 255))
- # transparency_mask = np.zeros_like((), dtype=np.uint8)
- transparency_mask = np.zeros((image_array.shape[0], image_array.shape[1]), dtype=np.uint8)
- transparency_mask[y1:y2, x1:x2] = 255
- transparency_mask_image = Image.fromarray(transparency_mask, mode="L")
- black_image.paste(segmented_image, mask=transparency_mask_image)
- return black_image
- @staticmethod
- def _format_results(result, filter=0):
- """Formats detection results into list of annotations each containing ID, segmentation, bounding box, score and
- area.
- """
- annotations = []
- n = len(result.masks.data) if result.masks is not None else 0
- for i in range(n):
- mask = result.masks.data[i] == 1.0
- if torch.sum(mask) >= filter:
- annotation = {
- "id": i,
- "segmentation": mask.cpu().numpy(),
- "bbox": result.boxes.data[i],
- "score": result.boxes.conf[i],
- }
- annotation["area"] = annotation["segmentation"].sum()
- annotations.append(annotation)
- return annotations
- @staticmethod
- def _get_bbox_from_mask(mask):
- """Applies morphological transformations to the mask, displays it, and if with_contours is True, draws
- contours.
- """
- mask = mask.astype(np.uint8)
- contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
- x1, y1, w, h = cv2.boundingRect(contours[0])
- x2, y2 = x1 + w, y1 + h
- if len(contours) > 1:
- for b in contours:
- x_t, y_t, w_t, h_t = cv2.boundingRect(b)
- x1 = min(x1, x_t)
- y1 = min(y1, y_t)
- x2 = max(x2, x_t + w_t)
- y2 = max(y2, y_t + h_t)
- return [x1, y1, x2, y2]
- def plot(
- self,
- annotations,
- output,
- bbox=None,
- points=None,
- point_label=None,
- mask_random_color=True,
- better_quality=True,
- retina=False,
- with_contours=True,
- ):
- """
- Plots annotations, bounding boxes, and points on images and saves the output.
- Args:
- annotations (list): Annotations to be plotted.
- output (str or Path): Output directory for saving the plots.
- bbox (list, optional): Bounding box coordinates [x1, y1, x2, y2]. Defaults to None.
- points (list, optional): Points to be plotted. Defaults to None.
- point_label (list, optional): Labels for the points. Defaults to None.
- mask_random_color (bool, optional): Whether to use random color for masks. Defaults to True.
- better_quality (bool, optional): Whether to apply morphological transformations for better mask quality.
- Defaults to True.
- retina (bool, optional): Whether to use retina mask. Defaults to False.
- with_contours (bool, optional): Whether to plot contours. Defaults to True.
- """
- import matplotlib.pyplot as plt
- pbar = TQDM(annotations, total=len(annotations))
- for ann in pbar:
- result_name = os.path.basename(ann.path)
- image = ann.orig_img[..., ::-1] # BGR to RGB
- original_h, original_w = ann.orig_shape
- # For macOS only
- # plt.switch_backend('TkAgg')
- plt.figure(figsize=(original_w / 100, original_h / 100))
- # Add subplot with no margin.
- plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
- plt.margins(0, 0)
- plt.gca().xaxis.set_major_locator(plt.NullLocator())
- plt.gca().yaxis.set_major_locator(plt.NullLocator())
- plt.imshow(image)
- if ann.masks is not None:
- masks = ann.masks.data
- if better_quality:
- if isinstance(masks[0], torch.Tensor):
- masks = np.array(masks.cpu())
- for i, mask in enumerate(masks):
- mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
- masks[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
- self.fast_show_mask(
- masks,
- plt.gca(),
- random_color=mask_random_color,
- bbox=bbox,
- points=points,
- pointlabel=point_label,
- retinamask=retina,
- target_height=original_h,
- target_width=original_w,
- )
- if with_contours:
- contour_all = []
- temp = np.zeros((original_h, original_w, 1))
- for i, mask in enumerate(masks):
- mask = mask.astype(np.uint8)
- if not retina:
- mask = cv2.resize(mask, (original_w, original_h), interpolation=cv2.INTER_NEAREST)
- contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
- contour_all.extend(iter(contours))
- cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
- color = np.array([0 / 255, 0 / 255, 1.0, 0.8])
- contour_mask = temp / 255 * color.reshape(1, 1, -1)
- plt.imshow(contour_mask)
- # Save the figure
- save_path = Path(output) / result_name
- save_path.parent.mkdir(exist_ok=True, parents=True)
- plt.axis("off")
- plt.savefig(save_path, bbox_inches="tight", pad_inches=0, transparent=True)
- plt.close()
- pbar.set_description(f"Saving {result_name} to {save_path}")
- @staticmethod
- def fast_show_mask(
- annotation,
- ax,
- random_color=False,
- bbox=None,
- points=None,
- pointlabel=None,
- retinamask=True,
- target_height=960,
- target_width=960,
- ):
- """
- Quickly shows the mask annotations on the given matplotlib axis.
- Args:
- annotation (array-like): Mask annotation.
- ax (matplotlib.axes.Axes): Matplotlib axis.
- random_color (bool, optional): Whether to use random color for masks. Defaults to False.
- bbox (list, optional): Bounding box coordinates [x1, y1, x2, y2]. Defaults to None.
- points (list, optional): Points to be plotted. Defaults to None.
- pointlabel (list, optional): Labels for the points. Defaults to None.
- retinamask (bool, optional): Whether to use retina mask. Defaults to True.
- target_height (int, optional): Target height for resizing. Defaults to 960.
- target_width (int, optional): Target width for resizing. Defaults to 960.
- """
- import matplotlib.pyplot as plt
- n, h, w = annotation.shape # batch, height, width
- areas = np.sum(annotation, axis=(1, 2))
- annotation = annotation[np.argsort(areas)]
- index = (annotation != 0).argmax(axis=0)
- if random_color:
- color = np.random.random((n, 1, 1, 3))
- else:
- color = np.ones((n, 1, 1, 3)) * np.array([30 / 255, 144 / 255, 1.0])
- transparency = np.ones((n, 1, 1, 1)) * 0.6
- visual = np.concatenate([color, transparency], axis=-1)
- mask_image = np.expand_dims(annotation, -1) * visual
- show = np.zeros((h, w, 4))
- h_indices, w_indices = np.meshgrid(np.arange(h), np.arange(w), indexing="ij")
- indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
- show[h_indices, w_indices, :] = mask_image[indices]
- if bbox is not None:
- x1, y1, x2, y2 = bbox
- ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1))
- # Draw point
- if points is not None:
- plt.scatter(
- [point[0] for i, point in enumerate(points) if pointlabel[i] == 1],
- [point[1] for i, point in enumerate(points) if pointlabel[i] == 1],
- s=20,
- c="y",
- )
- plt.scatter(
- [point[0] for i, point in enumerate(points) if pointlabel[i] == 0],
- [point[1] for i, point in enumerate(points) if pointlabel[i] == 0],
- s=20,
- c="m",
- )
- if not retinamask:
- show = cv2.resize(show, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
- ax.imshow(show)
- @torch.no_grad()
- def retrieve(self, model, preprocess, elements, search_text: str, device) -> int:
- """Processes images and text with a model, calculates similarity, and returns softmax score."""
- preprocessed_images = [preprocess(image).to(device) for image in elements]
- tokenized_text = self.clip.tokenize([search_text]).to(device)
- stacked_images = torch.stack(preprocessed_images)
- image_features = model.encode_image(stacked_images)
- text_features = model.encode_text(tokenized_text)
- image_features /= image_features.norm(dim=-1, keepdim=True)
- text_features /= text_features.norm(dim=-1, keepdim=True)
- probs = 100.0 * image_features @ text_features.T
- return probs[:, 0].softmax(dim=0)
- def _crop_image(self, format_results):
- """Crops an image based on provided annotation format and returns cropped images and related data."""
- image = Image.fromarray(cv2.cvtColor(self.results[0].orig_img, cv2.COLOR_BGR2RGB))
- ori_w, ori_h = image.size
- annotations = format_results
- mask_h, mask_w = annotations[0]["segmentation"].shape
- if ori_w != mask_w or ori_h != mask_h:
- image = image.resize((mask_w, mask_h))
- cropped_boxes = []
- cropped_images = []
- not_crop = []
- filter_id = []
- for _, mask in enumerate(annotations):
- if np.sum(mask["segmentation"]) <= 100:
- filter_id.append(_)
- continue
- bbox = self._get_bbox_from_mask(mask["segmentation"]) # bbox from mask
- cropped_boxes.append(self._segment_image(image, bbox)) # save cropped image
- cropped_images.append(bbox) # save cropped image bbox
- return cropped_boxes, cropped_images, not_crop, filter_id, annotations
- def box_prompt(self, bbox):
- """Modifies the bounding box properties and calculates IoU between masks and bounding box."""
- if self.results[0].masks is not None:
- assert bbox[2] != 0 and bbox[3] != 0, "Bounding box width and height should not be zero"
- masks = self.results[0].masks.data
- target_height, target_width = self.results[0].orig_shape
- h = masks.shape[1]
- w = masks.shape[2]
- if h != target_height or w != target_width:
- bbox = [
- int(bbox[0] * w / target_width),
- int(bbox[1] * h / target_height),
- int(bbox[2] * w / target_width),
- int(bbox[3] * h / target_height),
- ]
- bbox[0] = max(round(bbox[0]), 0)
- bbox[1] = max(round(bbox[1]), 0)
- bbox[2] = min(round(bbox[2]), w)
- bbox[3] = min(round(bbox[3]), h)
- # IoUs = torch.zeros(len(masks), dtype=torch.float32)
- bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0])
- masks_area = torch.sum(masks[:, bbox[1] : bbox[3], bbox[0] : bbox[2]], dim=(1, 2))
- orig_masks_area = torch.sum(masks, dim=(1, 2))
- union = bbox_area + orig_masks_area - masks_area
- iou = masks_area / union
- max_iou_index = torch.argmax(iou)
- self.results[0].masks.data = torch.tensor(np.array([masks[max_iou_index].cpu().numpy()]))
- return self.results
- def point_prompt(self, points, pointlabel): # numpy
- """Adjusts points on detected masks based on user input and returns the modified results."""
- if self.results[0].masks is not None:
- masks = self._format_results(self.results[0], 0)
- target_height, target_width = self.results[0].orig_shape
- h = masks[0]["segmentation"].shape[0]
- w = masks[0]["segmentation"].shape[1]
- if h != target_height or w != target_width:
- points = [[int(point[0] * w / target_width), int(point[1] * h / target_height)] for point in points]
- onemask = np.zeros((h, w))
- for annotation in masks:
- mask = annotation["segmentation"] if isinstance(annotation, dict) else annotation
- for i, point in enumerate(points):
- if mask[point[1], point[0]] == 1 and pointlabel[i] == 1:
- onemask += mask
- if mask[point[1], point[0]] == 1 and pointlabel[i] == 0:
- onemask -= mask
- onemask = onemask >= 1
- self.results[0].masks.data = torch.tensor(np.array([onemask]))
- return self.results
- def text_prompt(self, text):
- """Processes a text prompt, applies it to existing results and returns the updated results."""
- if self.results[0].masks is not None:
- format_results = self._format_results(self.results[0], 0)
- cropped_boxes, cropped_images, not_crop, filter_id, annotations = self._crop_image(format_results)
- clip_model, preprocess = self.clip.load("ViT-B/32", device=self.device)
- scores = self.retrieve(clip_model, preprocess, cropped_boxes, text, device=self.device)
- max_idx = scores.argsort()
- max_idx = max_idx[-1]
- max_idx += sum(np.array(filter_id) <= int(max_idx))
- self.results[0].masks.data = torch.tensor(np.array([annotations[max_idx]["segmentation"]]))
- return self.results
- def everything_prompt(self):
- """Returns the processed results from the previous methods in the class."""
- return self.results
|