123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- import warnings
- warnings.filterwarnings('ignore')
- import os
- import pandas as pd
- import numpy as np
- import matplotlib.pylab as plt
- pwd = os.getcwd()
- names = []
- plt.figure(figsize=(10, 10))
- plt.subplot(2, 2, 1)
- for i in names:
- data = pd.read_csv(f'runs/train/{i}/results.csv')
- data[' metrics/precision(B)'] = data[' metrics/precision(B)'].astype(np.float32).replace(np.inf, np.nan)
- data[' metrics/precision(B)'] = data[' metrics/precision(B)'].fillna(data[' metrics/precision(B)'].interpolate())
- plt.plot(data[' metrics/precision(B)'], label=i)
- plt.xlabel('epoch')
- plt.title('precision')
- plt.legend()
- plt.subplot(2, 2, 2)
- for i in names:
- data = pd.read_csv(f'runs/train/{i}/results.csv')
- data[' metrics/recall(B)'] = data[' metrics/recall(B)'].astype(np.float32).replace(np.inf, np.nan)
- data[' metrics/recall(B)'] = data[' metrics/recall(B)'].fillna(data[' metrics/recall(B)'].interpolate())
- plt.plot(data[' metrics/recall(B)'], label=i)
- plt.xlabel('epoch')
- plt.title('recall')
- plt.legend()
- plt.subplot(2, 2, 3)
- for i in names:
- data = pd.read_csv(f'runs/train/{i}/results.csv')
- data[' metrics/mAP50(B)'] = data[' metrics/mAP50(B)'].astype(np.float32).replace(np.inf, np.nan)
- data[' metrics/mAP50(B)'] = data[' metrics/mAP50(B)'].fillna(data[' metrics/mAP50(B)'].interpolate())
- plt.plot(data[' metrics/mAP50(B)'], label=i)
- plt.xlabel('epoch')
- plt.title('mAP_0.5')
- plt.legend()
- plt.subplot(2, 2, 4)
- for i in names:
- data = pd.read_csv(f'runs/train/{i}/results.csv')
- data[' metrics/mAP50-95(B)'] = data[' metrics/mAP50-95(B)'].astype(np.float32).replace(np.inf, np.nan)
- data[' metrics/mAP50-95(B)'] = data[' metrics/mAP50-95(B)'].fillna(data[' metrics/mAP50-95(B)'].interpolate())
- plt.plot(data[' metrics/mAP50-95(B)'], label=i)
- plt.xlabel('epoch')
- plt.title('mAP_0.5:0.95')
- plt.legend()
- plt.tight_layout()
- plt.savefig('metrice_curve.png')
- print(f'metrice_curve.png save in {pwd}/metrice_curve.png')
- plt.figure(figsize=(15, 10))
- plt.subplot(2, 3, 1)
- for i in names:
- data = pd.read_csv(f'runs/train/{i}/results.csv')
- data[' train/box_loss'] = data[' train/box_loss'].astype(np.float32).replace(np.inf, np.nan)
- data[' train/box_loss'] = data[' train/box_loss'].fillna(data[' train/box_loss'].interpolate())
- plt.plot(data[' train/box_loss'], label=i)
- plt.xlabel('epoch')
- plt.title('train/box_loss')
- plt.legend()
- plt.subplot(2, 3, 2)
- for i in names:
- data = pd.read_csv(f'runs/train/{i}/results.csv')
- data[' train/dfl_loss'] = data[' train/dfl_loss'].astype(np.float32).replace(np.inf, np.nan)
- data[' train/dfl_loss'] = data[' train/dfl_loss'].fillna(data[' train/dfl_loss'].interpolate())
- plt.plot(data[' train/dfl_loss'], label=i)
- plt.xlabel('epoch')
- plt.title('train/dfl_loss')
- plt.legend()
- plt.subplot(2, 3, 3)
- for i in names:
- data = pd.read_csv(f'runs/train/{i}/results.csv')
- data[' train/cls_loss'] = data[' train/cls_loss'].astype(np.float32).replace(np.inf, np.nan)
- data[' train/cls_loss'] = data[' train/cls_loss'].fillna(data[' train/cls_loss'].interpolate())
- plt.plot(data[' train/cls_loss'], label=i)
- plt.xlabel('epoch')
- plt.title('train/cls_loss')
- plt.legend()
- plt.subplot(2, 3, 4)
- for i in names:
- data = pd.read_csv(f'runs/train/{i}/results.csv')
- data[' val/box_loss'] = data[' val/box_loss'].astype(np.float32).replace(np.inf, np.nan)
- data[' val/box_loss'] = data[' val/box_loss'].fillna(data[' val/box_loss'].interpolate())
- plt.plot(data[' val/box_loss'], label=i)
- plt.xlabel('epoch')
- plt.title('val/box_loss')
- plt.legend()
- plt.subplot(2, 3, 5)
- for i in names:
- data = pd.read_csv(f'runs/train/{i}/results.csv')
- data[' val/dfl_loss'] = data[' val/dfl_loss'].astype(np.float32).replace(np.inf, np.nan)
- data[' val/dfl_loss'] = data[' val/dfl_loss'].fillna(data[' val/dfl_loss'].interpolate())
- plt.plot(data[' val/dfl_loss'], label=i)
- plt.xlabel('epoch')
- plt.title('val/dfl_loss')
- plt.legend()
- plt.subplot(2, 3, 6)
- for i in names:
- data = pd.read_csv(f'runs/train/{i}/results.csv')
- data[' val/cls_loss'] = data[' val/cls_loss'].astype(np.float32).replace(np.inf, np.nan)
- data[' val/cls_loss'] = data[' val/cls_loss'].fillna(data[' val/cls_loss'].interpolate())
- plt.plot(data[' val/cls_loss'], label=i)
- plt.xlabel('epoch')
- plt.title('val/cls_loss')
- plt.legend()
- plt.tight_layout()
- plt.savefig('loss_curve.png')
- print(f'loss_curve.png save in {pwd}/loss_curve.png')
|