123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986 |
- # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
- """
- Train a YOLOv5 model on a custom dataset. Models and datasets download automatically from the latest YOLOv5 release.
- Usage - Single-GPU training:
- $ python train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (recommended)
- $ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch
- Usage - Multi-GPU DDP training:
- $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights yolov5s.pt --img 640 --device 0,1,2,3
- Models: https://github.com/ultralytics/yolov5/tree/master/models
- Datasets: https://github.com/ultralytics/yolov5/tree/master/data
- Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data
- """
- import argparse
- import math
- import os
- import random
- import subprocess
- import sys
- import time
- from copy import deepcopy
- from datetime import datetime, timedelta
- from pathlib import Path
- try:
- import comet_ml # must be imported before torch (if installed)
- except ImportError:
- comet_ml = None
- import numpy as np
- import torch
- import torch.distributed as dist
- import torch.nn as nn
- import yaml
- from torch.optim import lr_scheduler
- from tqdm import tqdm
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[0] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
- import val as validate # for end-of-epoch mAP
- import TrainSdk
- from models.experimental import attempt_load
- from models.yolo import Model
- from utils.autoanchor import check_anchors
- from utils.autobatch import check_train_batch_size
- from utils.callbacks import Callbacks
- from utils.dataloaders import create_dataloader, create_dataloader_platform
- from utils.downloads import attempt_download, is_url
- from utils.general import (
- LOGGER,
- TQDM_BAR_FORMAT,
- check_amp,
- check_dataset,
- check_file,
- check_img_size,
- check_suffix,
- check_yaml,
- colorstr,
- get_latest_run,
- increment_path,
- init_seeds,
- intersect_dicts,
- labels_to_class_weights,
- labels_to_image_weights,
- methods,
- one_cycle,
- print_args,
- print_mutation,
- strip_optimizer,
- yaml_save,
- )
- from utils.loggers import LOGGERS, Loggers
- from utils.loggers.comet.comet_utils import check_comet_resume
- from utils.loss import ComputeLoss, ComputeLossOTA
- from utils.metrics import fitness
- from utils.plots import plot_evolve
- from utils.torch_utils import (
- EarlyStopping,
- ModelEMA,
- de_parallel,
- select_device,
- smart_DDP,
- smart_optimizer,
- smart_resume,
- torch_distributed_zero_first,
- )
- from metrics.model2onnx import run as model2onnx
- from metrics.image_test.object_metrics import ObjectMetrics, YoloType, YoloMetas
- LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html
- RANK = int(os.getenv("RANK", -1))
- WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
- def train(hyp, opt, device, callbacks):
- """
- Trains YOLOv5 model with given hyperparameters, options, and device, managing datasets, model architecture, loss
- computation, and optimizer steps.
- `hyp` argument is path/to/hyp.yaml or hyp dictionary.
- """
- save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze, is_train_on_platform, use_v7_loss = (
- Path(opt.save_dir),
- opt.epochs,
- opt.batch_size,
- opt.weights,
- opt.single_cls,
- opt.evolve,
- opt.data,
- opt.cfg,
- opt.resume,
- opt.noval,
- opt.nosave,
- opt.workers,
- opt.freeze,
- opt.is_train_on_platform,
- opt.use_v7_loss
- )
- callbacks.run("on_pretrain_routine_start")
- # Directories
- w = save_dir / "weights" # weights dir
- (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
- last, best = w / "last.pt", w / "best.pt"
- # Hyperparameters
- if isinstance(hyp, str):
- with open(hyp, errors="ignore") as f:
- hyp = yaml.safe_load(f) # load hyps dict
- LOGGER.info(colorstr("hyperparameters: ") + ", ".join(f"{k}={v}" for k, v in hyp.items()))
- opt.hyp = hyp.copy() # for saving hyps to checkpoints
- # Save run settings
- if not evolve:
- yaml_save(save_dir / "hyp.yaml", hyp)
- yaml_save(save_dir / "opt.yaml", vars(opt))
- TrainSdk.save_output_model(save_dir / "hyp.yaml")
- TrainSdk.save_output_model(save_dir / "opt.yaml")
- # Loggers
- data_dict = None
- if RANK in {-1, 0}:
- include_loggers = list(LOGGERS)
- if getattr(opt, "ndjson_console", False):
- include_loggers.append("ndjson_console")
- if getattr(opt, "ndjson_file", False):
- include_loggers.append("ndjson_file")
- loggers = Loggers(
- save_dir=save_dir,
- weights=weights,
- opt=opt,
- hyp=hyp,
- logger=LOGGER,
- include=tuple(include_loggers),
- )
- # Register actions
- for k in methods(loggers):
- callbacks.register_action(k, callback=getattr(loggers, k))
- # Process custom dataset artifact link
- data_dict = loggers.remote_dataset
- if resume: # If resuming runs from remote artifact
- weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
- # Config
- plots = not evolve and not opt.noplots # create plots
- cuda = device.type != "cpu"
- init_seeds(opt.seed + 1 + RANK, deterministic=True)
- with torch_distributed_zero_first(LOCAL_RANK):
- data_dict = data_dict or check_dataset(data, is_train_on_platform) # check if None
- #训练训练无需train_path和val_path
- if not is_train_on_platform:
- train_path, val_path = data_dict["train"], data_dict["val"]
- nc = 1 if single_cls else int(data_dict["nc"]) # number of classes
- names = {0: "item"} if single_cls and len(data_dict["names"]) != 1 else data_dict["names"] # class names
- if is_train_on_platform:
- is_coco = False
- else:
- is_coco = isinstance(val_path, str) and val_path.endswith("coco/val2017.txt") # COCO dataset
- # Model
- check_suffix(weights, ".pt") # check weights
- pretrained = weights.endswith(".pt")
- if pretrained:
- with torch_distributed_zero_first(LOCAL_RANK):
- weights = attempt_download(weights) # download if not found locally
- ckpt = torch.load(weights, map_location="cpu") # load checkpoint to CPU to avoid CUDA memory leak
- model = Model(cfg or ckpt["model"].yaml, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device) # create
- exclude = ["anchor"] if (cfg or hyp.get("anchors")) and not resume else [] # exclude keys
- csd = ckpt["model"].float().state_dict() # checkpoint state_dict as FP32
- csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
- model.load_state_dict(csd, strict=False) # load
- LOGGER.info(f"Transferred {len(csd)}/{len(model.state_dict())} items from {weights}") # report
- else:
- model = Model(cfg, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device) # create
- amp = check_amp(model) # check AMP
- # Freeze
- freeze = [f"model.{x}." for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
- for k, v in model.named_parameters():
- v.requires_grad = True # train all layers
- # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
- if any(x in k for x in freeze):
- LOGGER.info(f"freezing {k}")
- v.requires_grad = False
- # Image size
- gs = max(int(model.stride.max()), 32) # grid size (max stride)
- imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
- # Batch size
- if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
- batch_size = check_train_batch_size(model, imgsz, amp)
- loggers.on_params_update({"batch_size": batch_size})
- # Optimizer
- nbs = 64 # nominal batch size
- accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
- hyp["weight_decay"] *= batch_size * accumulate / nbs # scale weight_decay
- optimizer = smart_optimizer(model, opt.optimizer, hyp["lr0"], hyp["momentum"], hyp["weight_decay"])
- # Scheduler
- if opt.cos_lr:
- lf = one_cycle(1, hyp["lrf"], epochs) # cosine 1->hyp['lrf']
- else:
- lf = lambda x: (1 - x / epochs) * (1.0 - hyp["lrf"]) + hyp["lrf"] # linear
- scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
- # EMA
- ema = ModelEMA(model) if RANK in {-1, 0} else None
- # Resume
- best_fitness, start_epoch = 0.0, 0
- if pretrained:
- if resume:
- best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
- del ckpt, csd
- # DP mode
- if cuda and RANK == -1 and torch.cuda.device_count() > 1:
- LOGGER.warning(
- "WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n"
- "See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started."
- )
- model = torch.nn.DataParallel(model)
- # SyncBatchNorm
- if opt.sync_bn and cuda and RANK != -1:
- model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
- LOGGER.info("Using SyncBatchNorm()")
- # Trainloader
- if is_train_on_platform:
- train_loader, dataset = create_dataloader_platform(
- imgsz,
- batch_size // WORLD_SIZE,
- gs,
- single_cls,
- hyp=hyp,
- data_dict=data_dict,
- train_or_val_data='train',
- augment=True,
- cache=None if opt.cache == "val" else opt.cache,
- rect=opt.rect,
- rank=LOCAL_RANK,
- workers=workers,
- image_weights=opt.image_weights,
- quad=opt.quad,
- prefix=colorstr("train: "),
- shuffle=True,
- seed=opt.seed
- )
- else:
- train_loader, dataset = create_dataloader(
- train_path,
- imgsz,
- batch_size // WORLD_SIZE,
- gs,
- single_cls,
- hyp=hyp,
- augment=True,
- cache=None if opt.cache == "val" else opt.cache,
- rect=opt.rect,
- rank=LOCAL_RANK,
- workers=workers,
- image_weights=opt.image_weights,
- quad=opt.quad,
- prefix=colorstr("train: "),
- shuffle=True,
- seed=opt.seed,
- )
- labels = np.concatenate(dataset.labels, 0)
- mlc = int(labels[:, 0].max()) # max label class
- assert mlc < nc, f"Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}"
- # Process 0
- if RANK in {-1, 0}:
- if is_train_on_platform:
- val_loader = create_dataloader_platform(
- imgsz,
- batch_size // WORLD_SIZE * 2,
- gs,
- single_cls,
- hyp=hyp,
- data_dict=data_dict,
- train_or_val_data='val',
- cache=None if noval else opt.cache,
- rect=True,
- rank=-1,
- workers=workers * 2,
- pad=0.5,
- prefix=colorstr("val: "),
- )[0]
- else:
- val_loader = create_dataloader(
- val_path,
- imgsz,
- batch_size // WORLD_SIZE * 2,
- gs,
- single_cls,
- hyp=hyp,
- cache=None if noval else opt.cache,
- rect=True,
- rank=-1,
- workers=workers * 2,
- pad=0.5,
- prefix=colorstr("val: "),
- )[0]
- if not resume:
- if not opt.noautoanchor:
- check_anchors(dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz) # run AutoAnchor
- model.half().float() # pre-reduce anchor precision
- callbacks.run("on_pretrain_routine_end", labels, names)
- # DDP mode
- if cuda and RANK != -1:
- model = smart_DDP(model)
- # Model attributes
- nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
- hyp["box"] *= 3 / nl # scale to layers
- hyp["cls"] *= nc / 80 * 3 / nl # scale to classes and layers
- hyp["obj"] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
- hyp["label_smoothing"] = opt.label_smoothing
- model.nc = nc # attach number of classes to model
- model.hyp = hyp # attach hyperparameters to model
- model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
- model.names = names
- # Start training
- t0 = time.time()
- nb = len(train_loader) # number of batches
- nw = max(round(hyp["warmup_epochs"] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
- # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
- last_opt_step = -1
- maps = np.zeros(nc) # mAP per class
- results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
- scheduler.last_epoch = start_epoch - 1 # do not move
- scaler = torch.cuda.amp.GradScaler(enabled=amp)
- stopper, stop = EarlyStopping(patience=opt.patience), False
- if use_v7_loss:
- compute_loss = ComputeLossOTA(model)
- else:
- compute_loss = ComputeLoss(model) # init loss class
- callbacks.run("on_train_start")
- LOGGER.info(
- f'Image sizes {imgsz} train, {imgsz} val\n'
- f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
- f"Logging results to {colorstr('bold', save_dir)}\n"
- f'Starting training for {epochs} epochs...'
- )
- for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
- callbacks.run("on_train_epoch_start")
- model.train()
- # Update image weights (optional, single-GPU only)
- if opt.image_weights:
- cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
- iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
- dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
- # Update mosaic border (optional)
- # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
- # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
- mloss = torch.zeros(3, device=device) # mean losses
- if RANK != -1:
- train_loader.sampler.set_epoch(epoch)
- pbar = enumerate(train_loader)
- LOGGER.info(("\n" + "%11s" * 7) % ("Epoch", "GPU_mem", "box_loss", "obj_loss", "cls_loss", "Instances", "Size"))
- if RANK in {-1, 0}:
- pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
- optimizer.zero_grad()
- for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
- callbacks.run("on_train_batch_start")
- ni = i + nb * epoch # number integrated batches (since train start)
- imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
- accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
- for j, x in enumerate(optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x["lr"] = np.interp(ni, xi, [hyp["warmup_bias_lr"] if j == 0 else 0.0, x["initial_lr"] * lf(epoch)])
- if "momentum" in x:
- x["momentum"] = np.interp(ni, xi, [hyp["warmup_momentum"], hyp["momentum"]])
- # Multi-scale
- if opt.multi_scale:
- sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs # size
- sf = sz / max(imgs.shape[2:]) # scale factor
- if sf != 1:
- ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
- imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)
- # Forward
- with torch.cuda.amp.autocast(amp):
- pred = model(imgs) # forward
- if use_v7_loss:
- loss, loss_items = compute_loss(pred, targets.to(device), imgs)
- else:
- loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
- if RANK != -1:
- loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
- if opt.quad:
- loss *= 4.0
- # Backward
- scaler.scale(loss).backward()
- # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
- if ni - last_opt_step >= accumulate:
- scaler.unscale_(optimizer) # unscale gradients
- torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
- scaler.step(optimizer) # optimizer.step
- scaler.update()
- optimizer.zero_grad()
- if ema:
- ema.update(model)
- last_opt_step = ni
- # Log
- if RANK in {-1, 0}:
- mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
- mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G" # (GB)
- pbar.set_description(
- ("%11s" * 2 + "%11.4g" * 5)
- % (f"{epoch}/{epochs - 1}", mem, *mloss, targets.shape[0], imgs.shape[-1])
- )
- callbacks.run("on_train_batch_end", model, ni, imgs, targets, paths, list(mloss))
- if callbacks.stop_training:
- return
- # end batch ------------------------------------------------------------------------------------------------
- # Scheduler
- lr = [x["lr"] for x in optimizer.param_groups] # for loggers
- scheduler.step()
- if RANK in {-1, 0}:
- # mAP
- callbacks.run("on_train_epoch_end", epoch=epoch)
- ema.update_attr(model, include=["yaml", "nc", "hyp", "names", "stride", "class_weights"])
- final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
- if not noval or final_epoch: # Calculate mAP
- results, maps, _ = validate.run(
- data_dict,
- batch_size=batch_size // WORLD_SIZE * 2,
- imgsz=imgsz,
- half=amp,
- model=ema.ema,
- single_cls=single_cls,
- dataloader=val_loader,
- save_dir=save_dir,
- plots=False,
- callbacks=callbacks,
- compute_loss=compute_loss,
- use_v7_loss=use_v7_loss,
- is_train_on_platform=is_train_on_platform,
- )
- # Update best mAP
- fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
- stop = stopper(epoch=epoch, fitness=fi) # early stop check
- if fi > best_fitness:
- best_fitness = fi
- log_vals = list(mloss) + list(results) + lr
- callbacks.run("on_fit_epoch_end", log_vals, epoch, best_fitness, fi)
- # Save model
- if (not nosave) or (final_epoch and not evolve): # if save
- ckpt = {
- "epoch": epoch,
- "best_fitness": best_fitness,
- "model": deepcopy(de_parallel(model)).half(),
- "ema": deepcopy(ema.ema).half(),
- "updates": ema.updates,
- "optimizer": optimizer.state_dict(),
- "opt": vars(opt),
- "date": datetime.now().isoformat(),
- }
- # Save last, best and delete
- torch.save(ckpt, last)
- TrainSdk.save_output_model(last)
- if best_fitness == fi:
- torch.save(ckpt, best)
- TrainSdk.save_output_model(best)
- if opt.save_period > 0 and epoch % opt.save_period == 0:
- torch.save(ckpt, w / f"epoch{epoch}.pt")
- TrainSdk.save_output_model(w / f"epoch{epoch}.pt")
- # 额外计算转成onnx模型的评价指标
- if is_train_on_platform:
- model2onnx(
- weights=w / f"epoch{epoch}.pt",
- imgsz=[opt.imgsz, opt.imgsz],
- batch_size=1,
- device="cpu",
- inplace=True,
- dynamic=False,
- simplify=False,
- opset=17
- )
- onnx_model = w / f"epoch{epoch}.onnx"
- TrainSdk.save_output_model(onnx_model)
- platform_data_args = data_dict["platform_data_args"]
- class_id_map_list = platform_data_args["class_id_map_list"]
- dll_file = platform_data_args["dll_file"]
- wrong_file = platform_data_args["wrong_file"]
- yolo_metas_yaml = platform_data_args['yolo_metas']
- metrics_type = platform_data_args['metrics_type']
- extra_contours_args = platform_data_args['extra_contours_args']
- needed_image_results_dict = val_loader.dataset.needed_image_results_dict
- needed_rois_dict = val_loader.dataset.needed_rois_dict
- yolo_metas = YoloMetas(
- yolotype=YoloType[yolo_metas_yaml['yolotype']],
- confthres=yolo_metas_yaml['confthres'],
- clsconfthres=yolo_metas_yaml['clsconfthres'],
- batchsize=yolo_metas_yaml['batchsize'],
- maxdet=yolo_metas_yaml['maxdet'],
- minboxratio=yolo_metas_yaml['minboxratio'],
- # ApplyPostProcessToBBox中,用于单个类别的box筛选
- postprocesstopk=yolo_metas_yaml['postprocesstopk'],
- enableioufilt=yolo_metas_yaml['enableioufilt'],
- enableiosfilt=yolo_metas_yaml['enableiosfilt'],
- ioufltth=yolo_metas_yaml['ioufltth'],
- iosfltth=yolo_metas_yaml['iosfltth'],
- # FindBoxesToUnion中 当两框重叠率高于一定程度,且合并后增加面积并不多,则合并两框
- enableunion=yolo_metas_yaml['enableunion'],
- unioniouth=yolo_metas_yaml['unioniouth'],
- unioniosth=yolo_metas_yaml['unioniosth'],
- unionuobth=yolo_metas_yaml['unionuobth'],
- # ApplyBoxClassFilter中,同一幅图上有多个框,用于不用类别的box筛选
- enableioufiltdiffcls=yolo_metas_yaml['enableioufiltdiffcls'],
- enableiosfiltdiffcls=yolo_metas_yaml['enableiosfiltdiffcls'],
- ioufltthdiffcls=yolo_metas_yaml['ioufltthdiffcls'],
- iosfltthdiffcls=yolo_metas_yaml['iosfltthdiffcls'], )
- for class_id_map in class_id_map_list:
- metric_reports = ObjectMetrics(is_local_file=False,
- files=val_loader.dataset.im_files,
- token=val_loader.dataset.token,
- onnx_file=onnx_model,
- needed_image_results_dict=needed_image_results_dict,
- needed_rois_dict=needed_rois_dict,
- extra_contours_args=extra_contours_args,
- class_id_map=class_id_map,
- wrong_file=wrong_file,
- dll_file=dll_file,
- yolo_metas=yolo_metas,
- metrics_type=metrics_type)
- metric_reports.run()
- del ckpt
- callbacks.run("on_model_save", last, epoch, final_epoch, best_fitness, fi)
- # EarlyStopping
- if RANK != -1: # if DDP training
- broadcast_list = [stop if RANK == 0 else None]
- dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
- if RANK != 0:
- stop = broadcast_list[0]
- if stop:
- break # must break all DDP ranks
- # end epoch ----------------------------------------------------------------------------------------------------
- # end training -----------------------------------------------------------------------------------------------------
- if RANK in {-1, 0}:
- LOGGER.info(f"\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.")
- for f in last, best:
- if f.exists():
- strip_optimizer(f) # strip optimizers
- if f is best:
- LOGGER.info(f"\nValidating {f}...")
- results, _, _ = validate.run(
- data_dict,
- batch_size=batch_size // WORLD_SIZE * 2,
- imgsz=imgsz,
- model=attempt_load(f, device).half(),
- iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65
- single_cls=single_cls,
- dataloader=val_loader,
- save_dir=save_dir,
- save_json=is_coco,
- verbose=True,
- plots=plots,
- callbacks=callbacks,
- compute_loss=compute_loss,
- use_v7_loss=use_v7_loss,
- is_train_on_platform=is_train_on_platform,
- ) # val best model with plots
- if is_coco:
- callbacks.run("on_fit_epoch_end", list(mloss) + list(results) + lr, epoch, best_fitness, fi)
- callbacks.run("on_train_end", last, best, epoch, results)
- torch.cuda.empty_cache()
- return results
- def parse_opt(known=False):
- """Parses command-line arguments for YOLOv5 training, validation, and testing."""
- parser = argparse.ArgumentParser()
- parser.add_argument("--weights", type=str, default="", help="initial weights path")
- parser.add_argument("--cfg", type=str, default=ROOT / "models/hub/yolov5s-ghost.yaml", help="model.yaml path")
- parser.add_argument("--data", type=str, default=ROOT / "data/vinno_data/Thyroid-TIRADS-Obj.yaml", help="dataset.yaml path")
- parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch_breast-birads.yaml",
- help="hyperparameters path")
- parser.add_argument("--epochs", type=int, default=80, help="total training epochs")
- parser.add_argument("--batch-size", type=int, default=1, help="total batch size for all GPUs, -1 for autobatch")
- parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=320, help="train, val image size (pixels)")
- parser.add_argument("--rect", action="store_true", help="rectangular training")
- parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training")
- parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")
- parser.add_argument("--noval", action="store_true", help="only validate final epoch")
- parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor")
- parser.add_argument("--noplots", action="store_true", help="save no plot files")
- parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations")
- parser.add_argument(
- "--evolve_population", type=str, default=ROOT / "data/hyps", help="location for loading population"
- )
- parser.add_argument("--resume_evolve", type=str, default=None, help="resume evolve from last generation")
- parser.add_argument("--bucket", type=str, default="", help="gsutil bucket")
- parser.add_argument("--cache", type=str, nargs="?", const="ram", help="image --cache ram/disk")
- parser.add_argument("--image-weights", action="store_true", default=False,
- help="use weighted image selection for training")
- parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
- parser.add_argument("--multi-scale", action="store_true", help="vary img-size +/- 50%%")
- parser.add_argument("--single-cls", action="store_true", help="train multi-class data as single-class")
- parser.add_argument("--optimizer", type=str, choices=["SGD", "Adam", "AdamW"], default="SGD", help="optimizer")
- parser.add_argument("--sync-bn", action="store_true", help="use SyncBatchNorm, only available in DDP mode")
- parser.add_argument("--workers", type=int, default=1, help="max dataloader workers (per RANK in DDP mode)")
- parser.add_argument("--project", default=ROOT / "runs/train", help="save to project/name")
- parser.add_argument("--name", default="exp", help="save to project/name")
- parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
- parser.add_argument("--quad", action="store_true", help="quad dataloader")
- parser.add_argument("--cos-lr", action="store_true", help="cosine LR scheduler")
- parser.add_argument("--label-smoothing", type=float, default=0.0, help="Label smoothing epsilon")
- parser.add_argument("--patience", type=int, default=100, help="EarlyStopping patience (epochs without improvement)")
- parser.add_argument("--freeze", nargs="+", type=int, default=[0], help="Freeze layers: backbone=10, first3=0 1 2")
- parser.add_argument("--save-period", type=int, default=10, help="Save checkpoint every x epochs (disabled if < 1)")
- parser.add_argument("--seed", type=int, default=0, help="Global training seed")
- parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify")
- # Logger arguments
- parser.add_argument("--entity", default=None, help="Entity")
- parser.add_argument("--upload_dataset", nargs="?", const=True, default=False, help='Upload data, "val" option')
- parser.add_argument("--bbox_interval", type=int, default=-1, help="Set bounding-box image logging interval")
- parser.add_argument("--artifact_alias", type=str, default="latest", help="Version of dataset artifact to use")
- # NDJSON logging
- parser.add_argument("--ndjson-console", action="store_true", help="Log ndjson to console")
- parser.add_argument("--ndjson-file", action="store_true", help="Log ndjson to file")
- parser.add_argument('--use_v7_loss', type=bool, default=True, help='True is use v7_loss,False is use v5_loss')
- # VINNO AI平台训练
- parser.add_argument('--is_train_on_platform', type=bool, default=True,
- help='True is train on platform,False is train on local')
- return parser.parse_known_args()[0] if known else parser.parse_args()
- def main(opt, callbacks=Callbacks()):
- """Runs training or hyperparameter evolution with specified options and optional callbacks."""
- if RANK in {-1, 0}:
- print_args(vars(opt))
- # Resume (from specified or most recent last.pt)
- if opt.resume and not check_comet_resume(opt) and not opt.evolve:
- last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
- opt_yaml = last.parent.parent / "opt.yaml" # train options yaml
- opt_data = opt.data # original dataset
- if opt_yaml.is_file():
- with open(opt_yaml, errors="ignore") as f:
- d = yaml.safe_load(f)
- else:
- d = torch.load(last, map_location="cpu")["opt"]
- opt = argparse.Namespace(**d) # replace
- opt.cfg, opt.weights, opt.resume = "", str(last), True # reinstate
- if is_url(opt_data):
- opt.data = check_file(opt_data) # avoid HUB resume auth timeout
- else:
- opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = (
- check_file(opt.data),
- check_yaml(opt.cfg),
- check_yaml(opt.hyp),
- str(opt.weights),
- str(opt.project),
- ) # checks
- assert len(opt.cfg) or len(opt.weights), "either --cfg or --weights must be specified"
- if opt.evolve:
- if opt.project == str(ROOT / "runs/train"): # if default project name, rename to runs/evolve
- opt.project = str(ROOT / "runs/evolve")
- opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
- if opt.name == "cfg":
- opt.name = Path(opt.cfg).stem # use model.yaml as name
- opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
- # DDP mode
- device = select_device(opt.device, batch_size=opt.batch_size)
- if LOCAL_RANK != -1:
- msg = "is not compatible with YOLOv5 Multi-GPU DDP training"
- assert not opt.image_weights, f"--image-weights {msg}"
- assert not opt.evolve, f"--evolve {msg}"
- assert opt.batch_size != -1, f"AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size"
- assert opt.batch_size % WORLD_SIZE == 0, f"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE"
- assert torch.cuda.device_count() > LOCAL_RANK, "insufficient CUDA devices for DDP command"
- torch.cuda.set_device(LOCAL_RANK)
- device = torch.device("cuda", LOCAL_RANK)
- dist.init_process_group(
- backend="nccl" if dist.is_nccl_available() else "gloo", timeout=timedelta(seconds=10800)
- )
- # Train
- if not opt.evolve:
- train(opt.hyp, opt, device, callbacks)
- # Evolve hyperparameters (optional)
- else:
- # Hyperparameter evolution metadata (including this hyperparameter True-False, lower_limit, upper_limit)
- meta = {
- "lr0": (False, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
- "lrf": (False, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
- "momentum": (False, 0.6, 0.98), # SGD momentum/Adam beta1
- "weight_decay": (False, 0.0, 0.001), # optimizer weight decay
- "warmup_epochs": (False, 0.0, 5.0), # warmup epochs (fractions ok)
- "warmup_momentum": (False, 0.0, 0.95), # warmup initial momentum
- "warmup_bias_lr": (False, 0.0, 0.2), # warmup initial bias lr
- "box": (False, 0.02, 0.2), # box loss gain
- "cls": (False, 0.2, 4.0), # cls loss gain
- "cls_pw": (False, 0.5, 2.0), # cls BCELoss positive_weight
- "obj": (False, 0.2, 4.0), # obj loss gain (scale with pixels)
- "obj_pw": (False, 0.5, 2.0), # obj BCELoss positive_weight
- "iou_t": (False, 0.1, 0.7), # IoU training threshold
- "anchor_t": (False, 2.0, 8.0), # anchor-multiple threshold
- "anchors": (False, 2.0, 10.0), # anchors per output grid (0 to ignore)
- "fl_gamma": (False, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
- "hsv_h": (True, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
- "hsv_s": (True, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
- "hsv_v": (True, 0.0, 0.9), # image HSV-Value augmentation (fraction)
- "degrees": (True, 0.0, 45.0), # image rotation (+/- deg)
- "translate": (True, 0.0, 0.9), # image translation (+/- fraction)
- "scale": (True, 0.0, 0.9), # image scale (+/- gain)
- "shear": (True, 0.0, 10.0), # image shear (+/- deg)
- "perspective": (True, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
- "flipud": (True, 0.0, 1.0), # image flip up-down (probability)
- "fliplr": (True, 0.0, 1.0), # image flip left-right (probability)
- "mosaic": (True, 0.0, 1.0), # image mixup (probability)
- "mixup": (True, 0.0, 1.0), # image mixup (probability)
- "copy_paste": (True, 0.0, 1.0),
- } # segment copy-paste (probability)
- # GA configs
- pop_size = 50
- mutation_rate_min = 0.01
- mutation_rate_max = 0.5
- crossover_rate_min = 0.5
- crossover_rate_max = 1
- min_elite_size = 2
- max_elite_size = 5
- tournament_size_min = 2
- tournament_size_max = 10
- with open(opt.hyp, errors="ignore") as f:
- hyp = yaml.safe_load(f) # load hyps dict
- if "anchors" not in hyp: # anchors commented in hyp.yaml
- hyp["anchors"] = 3
- if opt.noautoanchor:
- del hyp["anchors"], meta["anchors"]
- opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
- # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
- evolve_yaml, evolve_csv = save_dir / "hyp_evolve.yaml", save_dir / "evolve.csv"
- if opt.bucket:
- # download evolve.csv if exists
- subprocess.run(
- [
- "gsutil",
- "cp",
- f"gs://{opt.bucket}/evolve.csv",
- str(evolve_csv),
- ]
- )
- # Delete the items in meta dictionary whose first value is False
- del_ = [item for item, value_ in meta.items() if value_[0] is False]
- hyp_GA = hyp.copy() # Make a copy of hyp dictionary
- for item in del_:
- del meta[item] # Remove the item from meta dictionary
- del hyp_GA[item] # Remove the item from hyp_GA dictionary
- # Set lower_limit and upper_limit arrays to hold the search space boundaries
- lower_limit = np.array([meta[k][1] for k in hyp_GA.keys()])
- upper_limit = np.array([meta[k][2] for k in hyp_GA.keys()])
- # Create gene_ranges list to hold the range of values for each gene in the population
- gene_ranges = [(lower_limit[i], upper_limit[i]) for i in range(len(upper_limit))]
- # Initialize the population with initial_values or random values
- initial_values = []
- # If resuming evolution from a previous checkpoint
- if opt.resume_evolve is not None:
- assert os.path.isfile(ROOT / opt.resume_evolve), "evolve population path is wrong!"
- with open(ROOT / opt.resume_evolve, errors="ignore") as f:
- evolve_population = yaml.safe_load(f)
- for value in evolve_population.values():
- value = np.array([value[k] for k in hyp_GA.keys()])
- initial_values.append(list(value))
- # If not resuming from a previous checkpoint, generate initial values from .yaml files in opt.evolve_population
- else:
- yaml_files = [f for f in os.listdir(opt.evolve_population) if f.endswith(".yaml")]
- for file_name in yaml_files:
- with open(os.path.join(opt.evolve_population, file_name)) as yaml_file:
- value = yaml.safe_load(yaml_file)
- value = np.array([value[k] for k in hyp_GA.keys()])
- initial_values.append(list(value))
- # Generate random values within the search space for the rest of the population
- if initial_values is None:
- population = [generate_individual(gene_ranges, len(hyp_GA)) for _ in range(pop_size)]
- elif pop_size > 1:
- population = [generate_individual(gene_ranges, len(hyp_GA)) for _ in range(pop_size - len(initial_values))]
- for initial_value in initial_values:
- population = [initial_value] + population
- # Run the genetic algorithm for a fixed number of generations
- list_keys = list(hyp_GA.keys())
- for generation in range(opt.evolve):
- if generation >= 1:
- save_dict = {}
- for i in range(len(population)):
- little_dict = {list_keys[j]: float(population[i][j]) for j in range(len(population[i]))}
- save_dict[f"gen{str(generation)}number{str(i)}"] = little_dict
- with open(save_dir / "evolve_population.yaml", "w") as outfile:
- yaml.dump(save_dict, outfile, default_flow_style=False)
- # Adaptive elite size
- elite_size = min_elite_size + int((max_elite_size - min_elite_size) * (generation / opt.evolve))
- # Evaluate the fitness of each individual in the population
- fitness_scores = []
- for individual in population:
- for key, value in zip(hyp_GA.keys(), individual):
- hyp_GA[key] = value
- hyp.update(hyp_GA)
- results = train(hyp.copy(), opt, device, callbacks)
- callbacks = Callbacks()
- # Write mutation results
- keys = (
- "metrics/precision",
- "metrics/recall",
- "metrics/mAP_0.5",
- "metrics/mAP_0.5:0.95",
- "val/box_loss",
- "val/obj_loss",
- "val/cls_loss",
- )
- print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket)
- fitness_scores.append(results[2])
- # Select the fittest individuals for reproduction using adaptive tournament selection
- selected_indices = []
- for _ in range(pop_size - elite_size):
- # Adaptive tournament size
- tournament_size = max(
- max(2, tournament_size_min),
- int(min(tournament_size_max, pop_size) - (generation / (opt.evolve / 10))),
- )
- # Perform tournament selection to choose the best individual
- tournament_indices = random.sample(range(pop_size), tournament_size)
- tournament_fitness = [fitness_scores[j] for j in tournament_indices]
- winner_index = tournament_indices[tournament_fitness.index(max(tournament_fitness))]
- selected_indices.append(winner_index)
- # Add the elite individuals to the selected indices
- elite_indices = [i for i in range(pop_size) if fitness_scores[i] in sorted(fitness_scores)[-elite_size:]]
- selected_indices.extend(elite_indices)
- # Create the next generation through crossover and mutation
- next_generation = []
- for _ in range(pop_size):
- parent1_index = selected_indices[random.randint(0, pop_size - 1)]
- parent2_index = selected_indices[random.randint(0, pop_size - 1)]
- # Adaptive crossover rate
- crossover_rate = max(
- crossover_rate_min, min(crossover_rate_max, crossover_rate_max - (generation / opt.evolve))
- )
- if random.uniform(0, 1) < crossover_rate:
- crossover_point = random.randint(1, len(hyp_GA) - 1)
- child = population[parent1_index][:crossover_point] + population[parent2_index][crossover_point:]
- else:
- child = population[parent1_index]
- # Adaptive mutation rate
- mutation_rate = max(
- mutation_rate_min, min(mutation_rate_max, mutation_rate_max - (generation / opt.evolve))
- )
- for j in range(len(hyp_GA)):
- if random.uniform(0, 1) < mutation_rate:
- child[j] += random.uniform(-0.1, 0.1)
- child[j] = min(max(child[j], gene_ranges[j][0]), gene_ranges[j][1])
- next_generation.append(child)
- # Replace the old population with the new generation
- population = next_generation
- # Print the best solution found
- best_index = fitness_scores.index(max(fitness_scores))
- best_individual = population[best_index]
- print("Best solution found:", best_individual)
- # Plot results
- plot_evolve(evolve_csv)
- LOGGER.info(
- f'Hyperparameter evolution finished {opt.evolve} generations\n'
- f"Results saved to {colorstr('bold', save_dir)}\n"
- f'Usage example: $ python train.py --hyp {evolve_yaml}'
- )
- def generate_individual(input_ranges, individual_length):
- """Generates a list of random values within specified input ranges for each gene in the individual."""
- individual = []
- for i in range(individual_length):
- lower_bound, upper_bound = input_ranges[i]
- individual.append(random.uniform(lower_bound, upper_bound))
- return individual
- def run(**kwargs):
- """
- Executes YOLOv5 training with given options, overriding with any kwargs provided.
- Example: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
- """
- opt = parse_opt(True)
- for k, v in kwargs.items():
- setattr(opt, k, v)
- main(opt)
- return opt
- if __name__ == "__main__":
- opt = parse_opt()
- main(opt)
|