123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910 |
- # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
- """
- Train a YOLOv5 segment model on a segment dataset Models and datasets download automatically from the latest YOLOv5
- release.
- Usage - Single-GPU training:
- $ python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 # from pretrained (recommended)
- $ python segment/train.py --data coco128-seg.yaml --weights '' --cfg yolov5s-seg.yaml --img 640 # from scratch
- Usage - Multi-GPU DDP training:
- $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
- Models: https://github.com/ultralytics/yolov5/tree/master/models
- Datasets: https://github.com/ultralytics/yolov5/tree/master/data
- Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data
- """
- import argparse
- import math
- import os
- import random
- import subprocess
- import sys
- import time
- from copy import deepcopy
- from datetime import datetime
- from pathlib import Path
- import numpy as np
- import torch
- import torch.distributed as dist
- import torch.nn as nn
- import yaml
- from torch.optim import lr_scheduler
- from tqdm import tqdm
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[0] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
- import segment.val as validate # for end-of-epoch mAP
- from models.experimental import attempt_load
- from models.yolo import SegmentationModel
- from utils.autoanchor import check_anchors
- from utils.autobatch import check_train_batch_size
- from utils.callbacks import Callbacks
- from utils.downloads import attempt_download, is_url
- from utils.general import (
- LOGGER,
- TQDM_BAR_FORMAT,
- check_amp,
- check_dataset,
- check_file,
- check_img_size,
- check_suffix,
- check_yaml,
- colorstr,
- get_latest_run,
- increment_path,
- init_seeds,
- intersect_dicts,
- labels_to_class_weights,
- labels_to_image_weights,
- one_cycle,
- print_args,
- print_mutation,
- strip_optimizer,
- yaml_save,
- )
- from utils.loggers import GenericLogger
- from utils.plots import plot_evolve, plot_labels
- from utils.segment.dataloaders import create_dataloader, create_dataloader_platform
- from utils.segment.loss import ComputeLoss
- from utils.segment.metrics import KEYS, fitness
- from utils.segment.plots import plot_images_and_masks, plot_results_with_masks
- from utils.torch_utils import (
- EarlyStopping,
- ModelEMA,
- de_parallel,
- select_device,
- smart_DDP,
- smart_optimizer,
- smart_resume,
- torch_distributed_zero_first,
- )
- from metrics.model2onnx import run as model2onnx
- import TrainSdk
- from metrics.image_test.seg_metrics import YoloType, YoloInstanceSegMetas, SegMetrics, ResizeMode
- LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html
- RANK = int(os.getenv("RANK", -1))
- WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
- def train(hyp, opt, device, callbacks):
- """
- Trains the YOLOv5 model on a dataset, managing hyperparameters, model optimization, logging, and validation.
- `hyp` is path/to/hyp.yaml or hyp dictionary.
- """
- (
- save_dir,
- epochs,
- batch_size,
- weights,
- single_cls,
- evolve,
- data,
- cfg,
- resume,
- noval,
- nosave,
- workers,
- freeze,
- mask_ratio,
- is_train_on_platform
- ) = (
- Path(opt.save_dir),
- opt.epochs,
- opt.batch_size,
- opt.weights,
- opt.single_cls,
- opt.evolve,
- opt.data,
- opt.cfg,
- opt.resume,
- opt.noval,
- opt.nosave,
- opt.workers,
- opt.freeze,
- opt.mask_ratio,
- opt.is_train_on_platform
- )
- # callbacks.run('on_pretrain_routine_start')
- # Directories
- w = save_dir / "weights" # weights dir
- (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
- last, best = w / "last.pt", w / "best.pt"
- # Hyperparameters
- if isinstance(hyp, str):
- with open(hyp, errors="ignore") as f:
- hyp = yaml.safe_load(f) # load hyps dict
- LOGGER.info(colorstr("hyperparameters: ") + ", ".join(f"{k}={v}" for k, v in hyp.items()))
- opt.hyp = hyp.copy() # for saving hyps to checkpoints
- # Save run settings
- if not evolve:
- yaml_save(save_dir / "hyp.yaml", hyp)
- yaml_save(save_dir / "opt.yaml", vars(opt))
- TrainSdk.save_output_model(save_dir / "hyp.yaml")
- TrainSdk.save_output_model(save_dir / "opt.yaml")
- # Loggers
- data_dict = None
- if RANK in {-1, 0}:
- logger = GenericLogger(opt=opt, console_logger=LOGGER)
- # Config
- plots = not evolve and not opt.noplots # create plots
- overlap = not opt.no_overlap
- cuda = device.type != "cpu"
- init_seeds(opt.seed + 1 + RANK, deterministic=True)
- with torch_distributed_zero_first(LOCAL_RANK):
- data_dict = data_dict or check_dataset(data, is_train_on_platform) # check if None
- #训练训练无需train_path和val_path
- if not is_train_on_platform:
- train_path, val_path = data_dict["train"], data_dict["val"]
- nc = 1 if single_cls else int(data_dict["nc"]) # number of classes
- names = {0: "item"} if single_cls and len(data_dict["names"]) != 1 else data_dict["names"] # class names
- if is_train_on_platform:
- is_coco = False
- else:
- is_coco = isinstance(val_path, str) and val_path.endswith("coco/val2017.txt") # COCO dataset
- # Model
- check_suffix(weights, ".pt") # check weights
- pretrained = weights.endswith(".pt")
- if pretrained:
- with torch_distributed_zero_first(LOCAL_RANK):
- weights = attempt_download(weights) # download if not found locally
- ckpt = torch.load(weights, map_location="cpu") # load checkpoint to CPU to avoid CUDA memory leak
- model = SegmentationModel(cfg or ckpt["model"].yaml, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device)
- exclude = ["anchor"] if (cfg or hyp.get("anchors")) and not resume else [] # exclude keys
- csd = ckpt["model"].float().state_dict() # checkpoint state_dict as FP32
- csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
- model.load_state_dict(csd, strict=False) # load
- LOGGER.info(f"Transferred {len(csd)}/{len(model.state_dict())} items from {weights}") # report
- else:
- model = SegmentationModel(cfg, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device) # create
- amp = check_amp(model) # check AMP
- # Freeze
- freeze = [f"model.{x}." for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
- for k, v in model.named_parameters():
- v.requires_grad = True # train all layers
- # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
- if any(x in k for x in freeze):
- LOGGER.info(f"freezing {k}")
- v.requires_grad = False
- # Image size
- gs = max(int(model.stride.max()), 32) # grid size (max stride)
- imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
- # Batch size
- if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
- batch_size = check_train_batch_size(model, imgsz, amp)
- logger.update_params({"batch_size": batch_size})
- # loggers.on_params_update({"batch_size": batch_size})
- # Optimizer
- nbs = 64 # nominal batch size
- accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
- hyp["weight_decay"] *= batch_size * accumulate / nbs # scale weight_decay
- optimizer = smart_optimizer(model, opt.optimizer, hyp["lr0"], hyp["momentum"], hyp["weight_decay"])
- # Scheduler
- if opt.cos_lr:
- lf = one_cycle(1, hyp["lrf"], epochs) # cosine 1->hyp['lrf']
- else:
- lf = lambda x: (1 - x / epochs) * (1.0 - hyp["lrf"]) + hyp["lrf"] # linear
- scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
- # EMA
- ema = ModelEMA(model) if RANK in {-1, 0} else None
- # Resume
- best_fitness, start_epoch = 0.0, 0
- if pretrained:
- if resume:
- best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
- del ckpt, csd
- # DP mode
- if cuda and RANK == -1 and torch.cuda.device_count() > 1:
- LOGGER.warning(
- "WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n"
- "See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started."
- )
- model = torch.nn.DataParallel(model)
- # SyncBatchNorm
- if opt.sync_bn and cuda and RANK != -1:
- model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
- LOGGER.info("Using SyncBatchNorm()")
- if is_train_on_platform:
- # Trainloader
- train_loader, dataset = create_dataloader_platform(
- imgsz,
- batch_size // WORLD_SIZE,
- gs,
- single_cls,
- hyp=hyp,
- data_dict=data_dict,
- train_or_val_data='train',
- augment=True,
- cache=None if opt.cache == "val" else opt.cache,
- rect=opt.rect,
- rank=LOCAL_RANK,
- workers=workers,
- image_weights=opt.image_weights,
- quad=opt.quad,
- prefix=colorstr("train: "),
- shuffle=True,
- mask_downsample_ratio=mask_ratio,
- overlap_mask=overlap,
- )
- else:
- # Trainloader
- train_loader, dataset = create_dataloader(
- train_path,
- imgsz,
- batch_size // WORLD_SIZE,
- gs,
- single_cls,
- hyp=hyp,
- augment=True,
- cache=None if opt.cache == "val" else opt.cache,
- rect=opt.rect,
- rank=LOCAL_RANK,
- workers=workers,
- image_weights=opt.image_weights,
- quad=opt.quad,
- prefix=colorstr("train: "),
- shuffle=True,
- mask_downsample_ratio=mask_ratio,
- overlap_mask=overlap,
- )
- labels = np.concatenate(dataset.labels, 0)
- mlc = int(labels[:, 0].max()) # max label class
- assert mlc < nc, f"Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}"
- # Process 0
- if RANK in {-1, 0}:
- if is_train_on_platform:
- val_loader = create_dataloader_platform(
- imgsz,
- batch_size // WORLD_SIZE * 2,
- gs,
- single_cls,
- hyp=hyp,
- data_dict=data_dict,
- train_or_val_data='val',
- cache=None if noval else opt.cache,
- rect=True,
- rank=-1,
- workers=workers * 2,
- pad=0.5,
- mask_downsample_ratio=mask_ratio,
- overlap_mask=overlap,
- prefix=colorstr("val: "),
- )[0]
- else:
- val_loader = create_dataloader(
- val_path,
- imgsz,
- batch_size // WORLD_SIZE * 2,
- gs,
- single_cls,
- hyp=hyp,
- cache=None if noval else opt.cache,
- rect=True,
- rank=-1,
- workers=workers * 2,
- pad=0.5,
- mask_downsample_ratio=mask_ratio,
- overlap_mask=overlap,
- prefix=colorstr("val: "),
- )[0]
- if not resume:
- if not opt.noautoanchor:
- check_anchors(dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz) # run AutoAnchor
- model.half().float() # pre-reduce anchor precision
- if plots:
- plot_labels(labels, names, save_dir)
- # callbacks.run('on_pretrain_routine_end', labels, names)
- # DDP mode
- if cuda and RANK != -1:
- model = smart_DDP(model)
- # Model attributes
- nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
- hyp["box"] *= 3 / nl # scale to layers
- hyp["cls"] *= nc / 80 * 3 / nl # scale to classes and layers
- hyp["obj"] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
- hyp["label_smoothing"] = opt.label_smoothing
- model.nc = nc # attach number of classes to model
- model.hyp = hyp # attach hyperparameters to model
- model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
- model.names = names
- # Start training
- t0 = time.time()
- nb = len(train_loader) # number of batches
- nw = max(round(hyp["warmup_epochs"] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
- # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
- last_opt_step = -1
- maps = np.zeros(nc) # mAP per class
- results = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
- scheduler.last_epoch = start_epoch - 1 # do not move
- scaler = torch.cuda.amp.GradScaler(enabled=amp)
- stopper, stop = EarlyStopping(patience=opt.patience), False
- compute_loss = ComputeLoss(model, overlap=overlap) # init loss class
- # callbacks.run('on_train_start')
- LOGGER.info(
- f'Image sizes {imgsz} train, {imgsz} val\n'
- f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
- f"Logging results to {colorstr('bold', save_dir)}\n"
- f'Starting training for {epochs} epochs...'
- )
- for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
- # callbacks.run('on_train_epoch_start')
- model.train()
- # Update image weights (optional, single-GPU only)
- if opt.image_weights:
- cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
- iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
- dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
- # Update mosaic border (optional)
- # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
- # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
- mloss = torch.zeros(4, device=device) # mean losses
- if RANK != -1:
- train_loader.sampler.set_epoch(epoch)
- pbar = enumerate(train_loader)
- LOGGER.info(
- ("\n" + "%11s" * 8)
- % ("Epoch", "GPU_mem", "box_loss", "seg_loss", "obj_loss", "cls_loss", "Instances", "Size")
- )
- if RANK in {-1, 0}:
- pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
- optimizer.zero_grad()
- for i, (imgs, targets, paths, _, masks) in pbar: # batch ------------------------------------------------------
- # callbacks.run('on_train_batch_start')
- ni = i + nb * epoch # number integrated batches (since train start)
- imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
- accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
- for j, x in enumerate(optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x["lr"] = np.interp(ni, xi, [hyp["warmup_bias_lr"] if j == 0 else 0.0, x["initial_lr"] * lf(epoch)])
- if "momentum" in x:
- x["momentum"] = np.interp(ni, xi, [hyp["warmup_momentum"], hyp["momentum"]])
- # Multi-scale
- if opt.multi_scale:
- sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs # size
- sf = sz / max(imgs.shape[2:]) # scale factor
- if sf != 1:
- ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
- imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)
- # Forward
- with torch.cuda.amp.autocast(amp):
- pred = model(imgs) # forward
- loss, loss_items = compute_loss(pred, targets.to(device), masks=masks.to(device).float())
- if RANK != -1:
- loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
- if opt.quad:
- loss *= 4.0
- # Backward
- scaler.scale(loss).backward()
- # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
- if ni - last_opt_step >= accumulate:
- scaler.unscale_(optimizer) # unscale gradients
- torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
- scaler.step(optimizer) # optimizer.step
- scaler.update()
- optimizer.zero_grad()
- if ema:
- ema.update(model)
- last_opt_step = ni
- # Log
- if RANK in {-1, 0}:
- mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
- mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G" # (GB)
- pbar.set_description(
- ("%11s" * 2 + "%11.4g" * 6)
- % (f"{epoch}/{epochs - 1}", mem, *mloss, targets.shape[0], imgs.shape[-1])
- )
- # callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths)
- # if callbacks.stop_training:
- # return
- # Mosaic plots
- if plots:
- if ni < 3:
- plot_images_and_masks(imgs, targets, masks, paths, save_dir / f"train_batch{ni}.jpg")
- if ni == 10:
- files = sorted(save_dir.glob("train*.jpg"))
- logger.log_images(files, "Mosaics", epoch)
- # end batch ------------------------------------------------------------------------------------------------
- # Scheduler
- lr = [x["lr"] for x in optimizer.param_groups] # for loggers
- scheduler.step()
- if RANK in {-1, 0}:
- # mAP
- # callbacks.run('on_train_epoch_end', epoch=epoch)
- ema.update_attr(model, include=["yaml", "nc", "hyp", "names", "stride", "class_weights"])
- final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
- if not noval or final_epoch: # Calculate mAP
- results, maps, _ = validate.run(
- data_dict,
- batch_size=batch_size // WORLD_SIZE * 2,
- imgsz=imgsz,
- half=amp,
- model=ema.ema,
- single_cls=single_cls,
- dataloader=val_loader,
- save_dir=save_dir,
- plots=False,
- callbacks=callbacks,
- compute_loss=compute_loss,
- mask_downsample_ratio=mask_ratio,
- is_train_on_platform=is_train_on_platform,
- overlap=overlap,
- )
- # Update best mAP
- fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
- stop = stopper(epoch=epoch, fitness=fi) # early stop check
- if fi > best_fitness:
- best_fitness = fi
- log_vals = list(mloss) + list(results) + lr
- # callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
- # Log val metrics and media
- metrics_dict = dict(zip(KEYS, log_vals))
- logger.log_metrics(metrics_dict, epoch)
- # Save model
- if (not nosave) or (final_epoch and not evolve): # if save
- ckpt = {
- "epoch": epoch,
- "best_fitness": best_fitness,
- "model": deepcopy(de_parallel(model)).half(),
- "ema": deepcopy(ema.ema).half(),
- "updates": ema.updates,
- "optimizer": optimizer.state_dict(),
- "opt": vars(opt),
- "date": datetime.now().isoformat(),
- }
- # Save last, best and delete
- torch.save(ckpt, last)
- TrainSdk.save_output_model(last)
- if best_fitness == fi:
- torch.save(ckpt, best)
- TrainSdk.save_output_model(best)
- if opt.save_period > 0 and epoch % opt.save_period == 0:
- torch.save(ckpt, w / f"epoch{epoch}.pt")
- logger.log_model(w / f"epoch{epoch}.pt")
- TrainSdk.save_output_model(w / f"epoch{epoch}.pt")
- # 额外计算转成onnx模型的评价指标
- if is_train_on_platform:
- model2onnx(
- weights=w / f'epoch{epoch}.pt',
- imgsz=[opt.imgsz, opt.imgsz],
- batch_size=1,
- device="cpu",
- inplace=True,
- dynamic=False,
- simplify=False,
- opset=17
- )
- onnx_model = w / f"epoch{epoch}.onnx"
- TrainSdk.save_output_model(onnx_model)
- platform_data_args = data_dict["platform_data_args"]
- class_id_map_list = platform_data_args["class_id_map_list"]
- dll_file = platform_data_args["dll_file"]
- wrong_file = platform_data_args["wrong_file"]
- yolo_metas_yaml = platform_data_args['yolo_inst_seg_metas']
- metrics_type = platform_data_args['metrics_type']
- resize_mode = ResizeMode[platform_data_args['resize_mode']]
- seg_post_process_param = platform_data_args['seg_post_process_param']
- extra_contours_args = platform_data_args['extra_contours_args']
- needed_image_results_dict = val_loader.dataset.needed_image_results_dict
- needed_rois_dict = val_loader.dataset.needed_rois_dict
- yolo_inst_seg_metas = YoloInstanceSegMetas(
- yolo_type=YoloType[yolo_metas_yaml['yolo_type']],
- box_conf_thres=yolo_metas_yaml['box_conf_thres'],
- cls_conf_thres=yolo_metas_yaml['cls_conf_thres'],
- batch_size=yolo_metas_yaml['batch_size'],
- max_det=yolo_metas_yaml['max_det'],
- min_box_ratio=yolo_metas_yaml['min_box_ratio'],
- post_process_top_k=yolo_metas_yaml['post_process_top_k'],
- iou_fltth=yolo_metas_yaml['iou_fltth'],
- ios_fltth=yolo_metas_yaml['ios_fltth'],
- enable_iou_filt=yolo_metas_yaml['enable_iou_filt'],
- enable_ios_filt=yolo_metas_yaml['enable_ios_filt'],
- iou_fltth_diff_cls=yolo_metas_yaml['iou_fltth_diff_cls'],
- ios_fltth_diff_cls=yolo_metas_yaml['ios_fltth_diff_cls'],
- enable_iou_filt_diff_cls=yolo_metas_yaml['enable_iou_filt_diff_cls'],
- enable_ios_filt_diff_cls=yolo_metas_yaml['enable_iou_filt_diff_cls'],
- mask_thres=yolo_metas_yaml['mask_thres'],
- )
- for class_id_map in class_id_map_list:
- metric_reports = SegMetrics(is_local_file=False,
- files=val_loader.dataset.im_files,
- token=val_loader.dataset.token,
- onnx_file=onnx_model,
- resize_mode=resize_mode,
- needed_image_results_dict=needed_image_results_dict,
- needed_rois_dict=needed_rois_dict,
- extra_contours_args=extra_contours_args,
- class_id_map=class_id_map,
- wrong_file=wrong_file,
- dll_file=dll_file,
- yolo_inst_seg_metas=yolo_inst_seg_metas,
- seg_post_process_param=seg_post_process_param,
- use_contour_for_iou=True,
- metrics_type=metrics_type)
- metric_reports.run()
- del ckpt
- callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
- # EarlyStopping
- if RANK != -1: # if DDP training
- broadcast_list = [stop if RANK == 0 else None]
- dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
- if RANK != 0:
- stop = broadcast_list[0]
- if stop:
- break # must break all DDP ranks
- # end epoch ----------------------------------------------------------------------------------------------------
- # end training -----------------------------------------------------------------------------------------------------
- if RANK in {-1, 0}:
- LOGGER.info(f"\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.")
- for f in last, best:
- if f.exists():
- strip_optimizer(f) # strip optimizers
- if f is best:
- LOGGER.info(f"\nValidating {f}...")
- results, _, _ = validate.run(
- data_dict,
- batch_size=batch_size // WORLD_SIZE * 2,
- imgsz=imgsz,
- model=attempt_load(f, device).half(),
- iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65
- single_cls=single_cls,
- dataloader=val_loader,
- save_dir=save_dir,
- save_json=is_coco,
- verbose=True,
- plots=plots,
- callbacks=callbacks,
- compute_loss=compute_loss,
- mask_downsample_ratio=mask_ratio,
- overlap=overlap,
- ) # val best model with plots
- if is_coco:
- # callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
- metrics_dict = dict(zip(KEYS, list(mloss) + list(results) + lr))
- logger.log_metrics(metrics_dict, epoch)
- # callbacks.run('on_train_end', last, best, epoch, results)
- # on train end callback using genericLogger
- logger.log_metrics(dict(zip(KEYS[4:16], results)), epochs)
- if not opt.evolve:
- logger.log_model(best, epoch)
- if plots:
- plot_results_with_masks(file=save_dir / "results.csv") # save results.png
- files = ["results.png", "confusion_matrix.png", *(f"{x}_curve.png" for x in ("F1", "PR", "P", "R"))]
- files = [(save_dir / f) for f in files if (save_dir / f).exists()] # filter
- LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
- logger.log_images(files, "Results", epoch + 1)
- logger.log_images(sorted(save_dir.glob("val*.jpg")), "Validation", epoch + 1)
- torch.cuda.empty_cache()
- return results
- def parse_opt(known=False):
- """
- Parses command line arguments for training configurations, returning parsed arguments.
- Supports both known and unknown args.
- """
- parser = argparse.ArgumentParser()
- parser.add_argument("--weights", type=str, default=ROOT / "", help="initial weights path")
- parser.add_argument("--cfg", type=str, default=ROOT / "models/segment/yolov8-seg.yaml", help="model.yaml path")
- parser.add_argument("--data", type=str, default=ROOT / "data/vinno_data/Neck-Organ-Seg.yaml", help="dataset.yaml path")
- parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch_neck-ogran.yaml", help="hyperparameters path")
- parser.add_argument("--epochs", type=int, default=100, help="total training epochs")
- parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch")
- parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=320, help="train, val image size (pixels)")
- parser.add_argument("--rect", action="store_true", help="rectangular training")
- parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training")
- parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")
- parser.add_argument("--noval", action="store_true", help="only validate final epoch")
- parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor")
- parser.add_argument("--noplots", action="store_true", help="save no plot files")
- parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations")
- parser.add_argument("--bucket", type=str, default="", help="gsutil bucket")
- parser.add_argument("--cache", type=str, nargs="?", const="ram", help="image --cache ram/disk")
- parser.add_argument("--image-weights", default=False, action="store_true", help="use weighted image selection for training")
- parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
- parser.add_argument("--multi-scale", action="store_true", help="vary img-size +/- 50%%")
- parser.add_argument("--single-cls", default=False, action="store_true", help="train multi-class data as single-class")
- parser.add_argument("--optimizer", type=str, choices=["SGD", "Adam", "AdamW"], default="SGD", help="optimizer")
- parser.add_argument("--sync-bn", action="store_true", help="use SyncBatchNorm, only available in DDP mode")
- parser.add_argument("--workers", type=int, default=1, help="max dataloader workers (per RANK in DDP mode)")
- parser.add_argument("--project", default=ROOT / "runs/train-seg", help="save to project/name")
- parser.add_argument("--name", default="exp", help="save to project/name")
- parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
- parser.add_argument("--quad", action="store_true", help="quad dataloader")
- parser.add_argument("--cos-lr", action="store_true", help="cosine LR scheduler")
- parser.add_argument("--label-smoothing", type=float, default=0.1, help="Label smoothing epsilon")
- parser.add_argument("--patience", type=int, default=100, help="EarlyStopping patience (epochs without improvement)")
- parser.add_argument("--freeze", nargs="+", type=int, default=[0], help="Freeze layers: backbone=10, first3=0 1 2")
- parser.add_argument("--save-period", type=int, default=10, help="Save checkpoint every x epochs (disabled if < 1)")
- parser.add_argument("--seed", type=int, default=0, help="Global training seed")
- parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify")
- # Instance Segmentation Args
- parser.add_argument("--mask-ratio", type=int, default=1, help="Downsample the truth masks to saving memory")
- parser.add_argument("--no-overlap", action="store_true", help="Overlap masks train faster at slightly less mAP")
- # VINNO AI平台训练
- parser.add_argument('--is_train_on_platform', type=bool, default=True, help='True is train on platform,False is train on local')
- return parser.parse_known_args()[0] if known else parser.parse_args()
- def main(opt, callbacks=Callbacks()):
- """Initializes training or evolution of YOLOv5 models based on provided configuration and options."""
- if RANK in {-1, 0}:
- print_args(vars(opt))
- # check_git_status()
- # check_requirements(ROOT / "requirements.txt")
- # Resume
- if opt.resume and not opt.evolve: # resume from specified or most recent last.pt
- last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
- opt_yaml = last.parent.parent / "opt.yaml" # train options yaml
- opt_data = opt.data # original dataset
- if opt_yaml.is_file():
- with open(opt_yaml, errors="ignore") as f:
- d = yaml.safe_load(f)
- else:
- d = torch.load(last, map_location="cpu")["opt"]
- opt = argparse.Namespace(**d) # replace
- opt.cfg, opt.weights, opt.resume = "", str(last), True # reinstate
- if is_url(opt_data):
- opt.data = check_file(opt_data) # avoid HUB resume auth timeout
- else:
- opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = (
- check_file(opt.data),
- check_yaml(opt.cfg),
- check_yaml(opt.hyp),
- str(opt.weights),
- str(opt.project),
- ) # checks
- assert len(opt.cfg) or len(opt.weights), "either --cfg or --weights must be specified"
- if opt.evolve:
- if opt.project == str(ROOT / "runs/train-seg"): # if default project name, rename to runs/evolve-seg
- opt.project = str(ROOT / "runs/evolve-seg")
- opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
- if opt.name == "cfg":
- opt.name = Path(opt.cfg).stem # use model.yaml as name
- opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
- # DDP mode
- device = select_device(opt.device, batch_size=opt.batch_size)
- if LOCAL_RANK != -1:
- msg = "is not compatible with YOLOv5 Multi-GPU DDP training"
- assert not opt.image_weights, f"--image-weights {msg}"
- assert not opt.evolve, f"--evolve {msg}"
- assert opt.batch_size != -1, f"AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size"
- assert opt.batch_size % WORLD_SIZE == 0, f"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE"
- assert torch.cuda.device_count() > LOCAL_RANK, "insufficient CUDA devices for DDP command"
- torch.cuda.set_device(LOCAL_RANK)
- device = torch.device("cuda", LOCAL_RANK)
- dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
- # Train
- if not opt.evolve:
- train(opt.hyp, opt, device, callbacks)
- # Evolve hyperparameters (optional)
- else:
- # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
- meta = {
- "lr0": (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
- "lrf": (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
- "momentum": (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
- "weight_decay": (1, 0.0, 0.001), # optimizer weight decay
- "warmup_epochs": (1, 0.0, 5.0), # warmup epochs (fractions ok)
- "warmup_momentum": (1, 0.0, 0.95), # warmup initial momentum
- "warmup_bias_lr": (1, 0.0, 0.2), # warmup initial bias lr
- "box": (1, 0.02, 0.2), # box loss gain
- "cls": (1, 0.2, 4.0), # cls loss gain
- "cls_pw": (1, 0.5, 2.0), # cls BCELoss positive_weight
- "obj": (1, 0.2, 4.0), # obj loss gain (scale with pixels)
- "obj_pw": (1, 0.5, 2.0), # obj BCELoss positive_weight
- "iou_t": (0, 0.1, 0.7), # IoU training threshold
- "anchor_t": (1, 2.0, 8.0), # anchor-multiple threshold
- "anchors": (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
- "fl_gamma": (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
- "hsv_h": (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
- "hsv_s": (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
- "hsv_v": (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
- "degrees": (1, 0.0, 45.0), # image rotation (+/- deg)
- "translate": (1, 0.0, 0.9), # image translation (+/- fraction)
- "scale": (1, 0.0, 0.9), # image scale (+/- gain)
- "shear": (1, 0.0, 10.0), # image shear (+/- deg)
- "perspective": (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
- "flipud": (1, 0.0, 1.0), # image flip up-down (probability)
- "fliplr": (0, 0.0, 1.0), # image flip left-right (probability)
- "mosaic": (1, 0.0, 1.0), # image mixup (probability)
- "mixup": (1, 0.0, 1.0), # image mixup (probability)
- "copy_paste": (1, 0.0, 1.0),
- } # segment copy-paste (probability)
- with open(opt.hyp, errors="ignore") as f:
- hyp = yaml.safe_load(f) # load hyps dict
- if "anchors" not in hyp: # anchors commented in hyp.yaml
- hyp["anchors"] = 3
- if opt.noautoanchor:
- del hyp["anchors"], meta["anchors"]
- opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
- # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
- evolve_yaml, evolve_csv = save_dir / "hyp_evolve.yaml", save_dir / "evolve.csv"
- if opt.bucket:
- # download evolve.csv if exists
- subprocess.run(
- [
- "gsutil",
- "cp",
- f"gs://{opt.bucket}/evolve.csv",
- str(evolve_csv),
- ]
- )
- for _ in range(opt.evolve): # generations to evolve
- if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
- # Select parent(s)
- parent = "single" # parent selection method: 'single' or 'weighted'
- x = np.loadtxt(evolve_csv, ndmin=2, delimiter=",", skiprows=1)
- n = min(5, len(x)) # number of previous results to consider
- x = x[np.argsort(-fitness(x))][:n] # top n mutations
- w = fitness(x) - fitness(x).min() + 1e-6 # weights (sum > 0)
- if parent == "single" or len(x) == 1:
- # x = x[random.randint(0, n - 1)] # random selection
- x = x[random.choices(range(n), weights=w)[0]] # weighted selection
- elif parent == "weighted":
- x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
- # Mutate
- mp, s = 0.8, 0.2 # mutation probability, sigma
- npr = np.random
- npr.seed(int(time.time()))
- g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
- ng = len(meta)
- v = np.ones(ng)
- while all(v == 1): # mutate until a change occurs (prevent duplicates)
- v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
- for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
- hyp[k] = float(x[i + 12] * v[i]) # mutate
- # Constrain to limits
- for k, v in meta.items():
- hyp[k] = max(hyp[k], v[1]) # lower limit
- hyp[k] = min(hyp[k], v[2]) # upper limit
- hyp[k] = round(hyp[k], 5) # significant digits
- # Train mutation
- results = train(hyp.copy(), opt, device, callbacks)
- callbacks = Callbacks()
- # Write mutation results
- print_mutation(KEYS[4:16], results, hyp.copy(), save_dir, opt.bucket)
- # Plot results
- plot_evolve(evolve_csv)
- LOGGER.info(
- f'Hyperparameter evolution finished {opt.evolve} generations\n'
- f"Results saved to {colorstr('bold', save_dir)}\n"
- f'Usage example: $ python train.py --hyp {evolve_yaml}'
- )
- def run(**kwargs):
- """
- Executes YOLOv5 training with given parameters, altering options programmatically; returns updated options.
- Example: mport train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
- """
- opt = parse_opt(True)
- for k, v in kwargs.items():
- setattr(opt, k, v)
- main(opt)
- return opt
- if __name__ == "__main__":
- # from wrongfile.neck_organ.datagenerate_thyroidorgan import date_generate
- #
- # # token = "4925EC4929684AA0ABB0173B03CFC8FF"
- # token = "4925EC4929684AA0ABB0173B03CFC8FF"
- # yaml_name = "organ-seg"
- # wrong_names = "wrongname.txt"
- #
- # #需要和yaml中的index对应
- # title_dict= {
- # "甲状腺横切":0,
- # "甲状腺纵切":0,
- # "颈动脉短轴": 1,
- # "颈动脉长轴": 1,
- # "颈部气管":2
- # }
- # use_image_title = ["无可标项"]
- #
- # date_generate(token, yaml_name, wrong_names, title_dict, use_image_title)
- opt = parse_opt()
- main(opt)
|