123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 |
- # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
- """
- PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5
- Usage:
- import torch
- model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # official model
- model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s') # from branch
- model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt') # custom/local model
- model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local') # local repo
- """
- import torch
- def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
- """
- Creates or loads a YOLOv5 model.
- Arguments:
- name (str): model name 'yolov5s' or path 'path/to/best.pt'
- pretrained (bool): load pretrained weights into the model
- channels (int): number of input channels
- classes (int): number of model classes
- autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
- verbose (bool): print all information to screen
- device (str, torch.device, None): device to use for model parameters
- Returns:
- YOLOv5 model
- """
- from pathlib import Path
- from models.common import AutoShape, DetectMultiBackend
- from models.experimental import attempt_load
- from models.yolo import ClassificationModel, DetectionModel, SegmentationModel
- from utils.downloads import attempt_download
- from utils.general import LOGGER, ROOT, check_requirements, intersect_dicts, logging
- from utils.torch_utils import select_device
- if not verbose:
- LOGGER.setLevel(logging.WARNING)
- check_requirements(ROOT / "requirements.txt", exclude=("opencv-python", "tensorboard", "thop"))
- name = Path(name)
- path = name.with_suffix(".pt") if name.suffix == "" and not name.is_dir() else name # checkpoint path
- try:
- device = select_device(device)
- if pretrained and channels == 3 and classes == 80:
- try:
- model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model
- if autoshape:
- if model.pt and isinstance(model.model, ClassificationModel):
- LOGGER.warning(
- "WARNING ⚠️ YOLOv5 ClassificationModel is not yet AutoShape compatible. "
- "You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224)."
- )
- elif model.pt and isinstance(model.model, SegmentationModel):
- LOGGER.warning(
- "WARNING ⚠️ YOLOv5 SegmentationModel is not yet AutoShape compatible. "
- "You will not be able to run inference with this model."
- )
- else:
- model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
- except Exception:
- model = attempt_load(path, device=device, fuse=False) # arbitrary model
- else:
- cfg = list((Path(__file__).parent / "models").rglob(f"{path.stem}.yaml"))[0] # model.yaml path
- model = DetectionModel(cfg, channels, classes) # create model
- if pretrained:
- ckpt = torch.load(attempt_download(path), map_location=device) # load
- csd = ckpt["model"].float().state_dict() # checkpoint state_dict as FP32
- csd = intersect_dicts(csd, model.state_dict(), exclude=["anchors"]) # intersect
- model.load_state_dict(csd, strict=False) # load
- if len(ckpt["model"].names) == classes:
- model.names = ckpt["model"].names # set class names attribute
- if not verbose:
- LOGGER.setLevel(logging.INFO) # reset to default
- return model.to(device)
- except Exception as e:
- help_url = "https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading"
- s = f"{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help."
- raise Exception(s) from e
- def custom(path="path/to/model.pt", autoshape=True, _verbose=True, device=None):
- """Loads a custom or local YOLOv5 model from a given path with optional autoshaping and device specification."""
- return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
- def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
- """Instantiates the YOLOv5-nano model with options for pretraining, input channels, class count, autoshaping,
- verbosity, and device.
- """
- return _create("yolov5n", pretrained, channels, classes, autoshape, _verbose, device)
- def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
- """Creates YOLOv5-small model with options for pretraining, input channels, class count, autoshaping, verbosity, and
- device.
- """
- return _create("yolov5s", pretrained, channels, classes, autoshape, _verbose, device)
- def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
- """Instantiates the YOLOv5-medium model with customizable pretraining, channel count, class count, autoshaping,
- verbosity, and device.
- """
- return _create("yolov5m", pretrained, channels, classes, autoshape, _verbose, device)
- def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
- """Creates YOLOv5-large model with options for pretraining, channels, classes, autoshaping, verbosity, and device
- selection.
- """
- return _create("yolov5l", pretrained, channels, classes, autoshape, _verbose, device)
- def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
- """Instantiates the YOLOv5-xlarge model with customizable pretraining, channel count, class count, autoshaping,
- verbosity, and device.
- """
- return _create("yolov5x", pretrained, channels, classes, autoshape, _verbose, device)
- def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
- """Creates YOLOv5-nano-P6 model with options for pretraining, channels, classes, autoshaping, verbosity, and
- device.
- """
- return _create("yolov5n6", pretrained, channels, classes, autoshape, _verbose, device)
- def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
- """Instantiate YOLOv5-small-P6 model with options for pretraining, input channels, number of classes, autoshaping,
- verbosity, and device selection.
- """
- return _create("yolov5s6", pretrained, channels, classes, autoshape, _verbose, device)
- def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
- """Creates YOLOv5-medium-P6 model with options for pretraining, channel count, class count, autoshaping, verbosity,
- and device.
- """
- return _create("yolov5m6", pretrained, channels, classes, autoshape, _verbose, device)
- def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
- """Instantiates the YOLOv5-large-P6 model with customizable pretraining, channel and class counts, autoshaping,
- verbosity, and device selection.
- """
- return _create("yolov5l6", pretrained, channels, classes, autoshape, _verbose, device)
- def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
- """Creates YOLOv5-xlarge-P6 model with options for pretraining, channels, classes, autoshaping, verbosity, and
- device.
- """
- return _create("yolov5x6", pretrained, channels, classes, autoshape, _verbose, device)
- if __name__ == "__main__":
- import argparse
- from pathlib import Path
- import numpy as np
- from PIL import Image
- from utils.general import cv2, print_args
- # Argparser
- parser = argparse.ArgumentParser()
- parser.add_argument("--model", type=str, default="yolov5s", help="model name")
- opt = parser.parse_args()
- print_args(vars(opt))
- # Model
- model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
- # model = custom(path='path/to/model.pt') # custom
- # Images
- imgs = [
- "data/images/zidane.jpg", # filename
- Path("data/images/zidane.jpg"), # Path
- "https://ultralytics.com/images/zidane.jpg", # URI
- cv2.imread("data/images/bus.jpg")[:, :, ::-1], # OpenCV
- Image.open("data/images/bus.jpg"), # PIL
- np.zeros((320, 640, 3)),
- ] # numpy
- # Inference
- results = model(imgs, size=320) # batched inference
- # Results
- results.print()
- results.save()
|