123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935 |
- # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
- """
- Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
- Format | `export.py --include` | Model
- --- | --- | ---
- PyTorch | - | yolov5s.pt
- TorchScript | `torchscript` | yolov5s.torchscript
- ONNX | `onnx` | yolov5s.onnx
- OpenVINO | `openvino` | yolov5s_openvino_model/
- TensorRT | `engine` | yolov5s.engine
- CoreML | `coreml` | yolov5s.mlmodel
- TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
- TensorFlow GraphDef | `pb` | yolov5s.pb
- TensorFlow Lite | `tflite` | yolov5s.tflite
- TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
- TensorFlow.js | `tfjs` | yolov5s_web_model/
- PaddlePaddle | `paddle` | yolov5s_paddle_model/
- Requirements:
- $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
- $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
- Usage:
- $ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
- Inference:
- $ python detect.py --weights yolov5s.pt # PyTorch
- yolov5s.torchscript # TorchScript
- yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
- yolov5s_openvino_model # OpenVINO
- yolov5s.engine # TensorRT
- yolov5s.mlmodel # CoreML (macOS-only)
- yolov5s_saved_model # TensorFlow SavedModel
- yolov5s.pb # TensorFlow GraphDef
- yolov5s.tflite # TensorFlow Lite
- yolov5s_edgetpu.tflite # TensorFlow Edge TPU
- yolov5s_paddle_model # PaddlePaddle
- TensorFlow.js:
- $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
- $ npm install
- $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
- $ npm start
- """
- import argparse
- import contextlib
- import json
- import os
- import platform
- import re
- import subprocess
- import sys
- import time
- import warnings
- from pathlib import Path
- import pandas as pd
- import torch
- from torch.utils.mobile_optimizer import optimize_for_mobile
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[0] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- if platform.system() != "Windows":
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
- from models.experimental import attempt_load
- from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel
- from utils.dataloaders import LoadImages
- from utils.general import (
- LOGGER,
- Profile,
- check_dataset,
- check_img_size,
- check_version,
- check_yaml,
- colorstr,
- file_size,
- get_default_args,
- print_args,
- url2file,
- yaml_save,
- )
- from utils.torch_utils import select_device, smart_inference_mode
- MACOS = platform.system() == "Darwin" # macOS environment
- class iOSModel(torch.nn.Module):
- def __init__(self, model, im):
- """Initializes an iOS compatible model with normalization based on image dimensions."""
- super().__init__()
- b, c, h, w = im.shape # batch, channel, height, width
- self.model = model
- self.nc = model.nc # number of classes
- if w == h:
- self.normalize = 1.0 / w
- else:
- self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h]) # broadcast (slower, smaller)
- # np = model(im)[0].shape[1] # number of points
- # self.normalize = torch.tensor([1. / w, 1. / h, 1. / w, 1. / h]).expand(np, 4) # explicit (faster, larger)
- def forward(self, x):
- """Runs forward pass on the input tensor, returning class confidences and normalized coordinates."""
- xywh, conf, cls = self.model(x)[0].squeeze().split((4, 1, self.nc), 1)
- return cls * conf, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4)
- def export_formats():
- """Returns a DataFrame of supported YOLOv5 model export formats and their properties."""
- x = [
- ["PyTorch", "-", ".pt", True, True],
- ["TorchScript", "torchscript", ".torchscript", True, True],
- ["ONNX", "onnx", ".onnx", True, True],
- ["OpenVINO", "openvino", "_openvino_model", True, False],
- ["TensorRT", "engine", ".engine", False, True],
- ["CoreML", "coreml", ".mlmodel", True, False],
- ["TensorFlow SavedModel", "saved_model", "_saved_model", True, True],
- ["TensorFlow GraphDef", "pb", ".pb", True, True],
- ["TensorFlow Lite", "tflite", ".tflite", True, False],
- ["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", False, False],
- ["TensorFlow.js", "tfjs", "_web_model", False, False],
- ["PaddlePaddle", "paddle", "_paddle_model", True, True],
- ]
- return pd.DataFrame(x, columns=["Format", "Argument", "Suffix", "CPU", "GPU"])
- def try_export(inner_func):
- """Decorator @try_export for YOLOv5 model export functions that logs success/failure, time taken, and file size."""
- inner_args = get_default_args(inner_func)
- def outer_func(*args, **kwargs):
- prefix = inner_args["prefix"]
- try:
- with Profile() as dt:
- f, model = inner_func(*args, **kwargs)
- LOGGER.info(f"{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)")
- return f, model
- except Exception as e:
- LOGGER.info(f"{prefix} export failure ❌ {dt.t:.1f}s: {e}")
- return None, None
- return outer_func
- @try_export
- def export_torchscript(model, im, file, optimize, prefix=colorstr("TorchScript:")):
- """Exports YOLOv5 model to TorchScript format, optionally optimized for mobile, with image shape and stride
- metadata.
- """
- LOGGER.info(f"\n{prefix} starting export with torch {torch.__version__}...")
- f = file.with_suffix(".torchscript")
- ts = torch.jit.trace(model, im, strict=False)
- d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
- extra_files = {"config.txt": json.dumps(d)} # torch._C.ExtraFilesMap()
- if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
- optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
- else:
- ts.save(str(f), _extra_files=extra_files)
- return f, None
- @try_export
- def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr("ONNX:")):
- """Exports a YOLOv5 model to ONNX format with dynamic axes and optional simplification."""
- # check_requirements("onnx>=1.12.0")
- import onnx
- LOGGER.info(f"\n{prefix} starting export with onnx {onnx.__version__}...")
- f = str(file.with_suffix(".onnx"))
- output_names = ["output0", "output1"] if isinstance(model, SegmentationModel) else ["output0"]
- if dynamic:
- dynamic = {"images": {0: "batch", 2: "height", 3: "width"}} # shape(1,3,640,640)
- if isinstance(model, SegmentationModel):
- dynamic["output0"] = {0: "batch", 1: "anchors"} # shape(1,25200,85)
- dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"} # shape(1,32,160,160)
- elif isinstance(model, DetectionModel):
- dynamic["output0"] = {0: "batch", 1: "anchors"} # shape(1,25200,85)
- torch.onnx.export(
- model.cpu() if dynamic else model, # --dynamic only compatible with cpu
- im.cpu() if dynamic else im,
- f,
- verbose=False,
- opset_version=opset,
- do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
- input_names=["images"],
- output_names=output_names,
- dynamic_axes=dynamic or None,
- )
- # Checks
- model_onnx = onnx.load(f) # load onnx model
- onnx.checker.check_model(model_onnx) # check onnx model
- # Metadata
- d = {"stride": int(max(model.stride)), "names": model.names}
- for k, v in d.items():
- meta = model_onnx.metadata_props.add()
- meta.key, meta.value = k, str(v)
- onnx.save(model_onnx, f)
- # Simplify
- if simplify:
- try:
- cuda = torch.cuda.is_available()
- # check_requirements(("onnxruntime-gpu" if cuda else "onnxruntime", "onnx-simplifier>=0.4.1"))
- import onnxsim
- LOGGER.info(f"{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...")
- model_onnx, check = onnxsim.simplify(model_onnx)
- assert check, "assert check failed"
- onnx.save(model_onnx, f)
- except Exception as e:
- LOGGER.info(f"{prefix} simplifier failure: {e}")
- return f, model_onnx
- @try_export
- def export_openvino(file, metadata, half, int8, data, prefix=colorstr("OpenVINO:")):
- # YOLOv5 OpenVINO export
- # check_requirements("openvino-dev>=2023.0") # requires openvino-dev: https://pypi.org/project/openvino-dev/
- import openvino.runtime as ov # noqa
- from openvino.tools import mo # noqa
- LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
- f = str(file).replace(file.suffix, f"_{'int8_' if int8 else ''}openvino_model{os.sep}")
- f_onnx = file.with_suffix(".onnx")
- f_ov = str(Path(f) / file.with_suffix(".xml").name)
- ov_model = mo.convert_model(f_onnx, model_name=file.stem, framework="onnx", compress_to_fp16=half) # export
- if int8:
- # check_requirements("nncf>=2.5.0") # requires at least version 2.5.0 to use the post-training quantization
- import nncf
- import numpy as np
- from utils.dataloaders import create_dataloader
- def gen_dataloader(yaml_path, task="train", imgsz=640, workers=4):
- data_yaml = check_yaml(yaml_path)
- data = check_dataset(data_yaml)
- dataloader = create_dataloader(
- data[task], imgsz=imgsz, batch_size=1, stride=32, pad=0.5, single_cls=False, rect=False, workers=workers
- )[0]
- return dataloader
- # noqa: F811
- def transform_fn(data_item):
- """
- Quantization transform function.
- Extracts and preprocess input data from dataloader item for quantization.
- Parameters:
- data_item: Tuple with data item produced by DataLoader during iteration
- Returns:
- input_tensor: Input data for quantization
- """
- assert data_item[0].dtype == torch.uint8, "input image must be uint8 for the quantization preprocessing"
- img = data_item[0].numpy().astype(np.float32) # uint8 to fp16/32
- img /= 255.0 # 0 - 255 to 0.0 - 1.0
- return np.expand_dims(img, 0) if img.ndim == 3 else img
- ds = gen_dataloader(data)
- quantization_dataset = nncf.Dataset(ds, transform_fn)
- ov_model = nncf.quantize(ov_model, quantization_dataset, preset=nncf.QuantizationPreset.MIXED)
- ov.serialize(ov_model, f_ov) # save
- yaml_save(Path(f) / file.with_suffix(".yaml").name, metadata) # add metadata.yaml
- return f, None
- @try_export
- def export_paddle(model, im, file, metadata, prefix=colorstr("PaddlePaddle:")):
- """Exports a YOLOv5 model to PaddlePaddle format using X2Paddle, saving to `save_dir` and adding a metadata.yaml
- file.
- """
- # check_requirements(("paddlepaddle", "x2paddle"))
- import x2paddle
- from x2paddle.convert import pytorch2paddle
- LOGGER.info(f"\n{prefix} starting export with X2Paddle {x2paddle.__version__}...")
- f = str(file).replace(".pt", f"_paddle_model{os.sep}")
- pytorch2paddle(module=model, save_dir=f, jit_type="trace", input_examples=[im]) # export
- yaml_save(Path(f) / file.with_suffix(".yaml").name, metadata) # add metadata.yaml
- return f, None
- @try_export
- def export_coreml(model, im, file, int8, half, nms, prefix=colorstr("CoreML:")):
- """Exports YOLOv5 model to CoreML format with optional NMS, INT8, and FP16 support; requires coremltools."""
- # check_requirements("coremltools")
- import coremltools as ct
- LOGGER.info(f"\n{prefix} starting export with coremltools {ct.__version__}...")
- f = file.with_suffix(".mlmodel")
- if nms:
- model = iOSModel(model, im)
- ts = torch.jit.trace(model, im, strict=False) # TorchScript model
- ct_model = ct.convert(ts, inputs=[ct.ImageType("image", shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
- bits, mode = (8, "kmeans_lut") if int8 else (16, "linear") if half else (32, None)
- if bits < 32:
- if MACOS: # quantization only supported on macOS
- with warnings.catch_warnings():
- warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
- ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
- else:
- print(f"{prefix} quantization only supported on macOS, skipping...")
- ct_model.save(f)
- return f, ct_model
- @try_export
- def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr("TensorRT:")):
- """
- Exports a YOLOv5 model to TensorRT engine format, requiring GPU and TensorRT>=7.0.0.
- https://developer.nvidia.com/tensorrt
- """
- assert im.device.type != "cpu", "export running on CPU but must be on GPU, i.e. `python export.py --device 0`"
- try:
- import tensorrt as trt
- except Exception:
- if platform.system() == "Linux":
- check_requirements("nvidia-tensorrt", cmds="-U --index-url https://pypi.ngc.nvidia.com")
- import tensorrt as trt
- if trt.__version__[0] == "7": # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
- grid = model.model[-1].anchor_grid
- model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
- export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
- model.model[-1].anchor_grid = grid
- else: # TensorRT >= 8
- check_version(trt.__version__, "8.0.0", hard=True) # require tensorrt>=8.0.0
- export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
- onnx = file.with_suffix(".onnx")
- LOGGER.info(f"\n{prefix} starting export with TensorRT {trt.__version__}...")
- assert onnx.exists(), f"failed to export ONNX file: {onnx}"
- f = file.with_suffix(".engine") # TensorRT engine file
- logger = trt.Logger(trt.Logger.INFO)
- if verbose:
- logger.min_severity = trt.Logger.Severity.VERBOSE
- builder = trt.Builder(logger)
- config = builder.create_builder_config()
- config.max_workspace_size = workspace * 1 << 30
- # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
- flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
- network = builder.create_network(flag)
- parser = trt.OnnxParser(network, logger)
- if not parser.parse_from_file(str(onnx)):
- raise RuntimeError(f"failed to load ONNX file: {onnx}")
- inputs = [network.get_input(i) for i in range(network.num_inputs)]
- outputs = [network.get_output(i) for i in range(network.num_outputs)]
- for inp in inputs:
- LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
- for out in outputs:
- LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
- if dynamic:
- if im.shape[0] <= 1:
- LOGGER.warning(f"{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument")
- profile = builder.create_optimization_profile()
- for inp in inputs:
- profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
- config.add_optimization_profile(profile)
- LOGGER.info(f"{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}")
- if builder.platform_has_fast_fp16 and half:
- config.set_flag(trt.BuilderFlag.FP16)
- with builder.build_engine(network, config) as engine, open(f, "wb") as t:
- t.write(engine.serialize())
- return f, None
- @try_export
- def export_saved_model(
- model,
- im,
- file,
- dynamic,
- tf_nms=False,
- agnostic_nms=False,
- topk_per_class=100,
- topk_all=100,
- iou_thres=0.45,
- conf_thres=0.25,
- keras=False,
- prefix=colorstr("TensorFlow SavedModel:"),
- ):
- # YOLOv5 TensorFlow SavedModel export
- try:
- import tensorflow as tf
- except Exception:
- check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}<=2.15.1")
- import tensorflow as tf
- from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
- from models.tf import TFModel
- LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
- if tf.__version__ > "2.13.1":
- helper_url = "https://github.com/ultralytics/yolov5/issues/12489"
- LOGGER.info(
- f"WARNING ⚠️ using Tensorflow {tf.__version__} > 2.13.1 might cause issue when exporting the model to tflite {helper_url}"
- ) # handling issue https://github.com/ultralytics/yolov5/issues/12489
- f = str(file).replace(".pt", "_saved_model")
- batch_size, ch, *imgsz = list(im.shape) # BCHW
- tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
- im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
- _ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
- inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
- outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
- keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
- keras_model.trainable = False
- keras_model.summary()
- if keras:
- keras_model.save(f, save_format="tf")
- else:
- spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
- m = tf.function(lambda x: keras_model(x)) # full model
- m = m.get_concrete_function(spec)
- frozen_func = convert_variables_to_constants_v2(m)
- tfm = tf.Module()
- tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec])
- tfm.__call__(im)
- tf.saved_model.save(
- tfm,
- f,
- options=tf.saved_model.SaveOptions(experimental_custom_gradients=False)
- if check_version(tf.__version__, "2.6")
- else tf.saved_model.SaveOptions(),
- )
- return f, keras_model
- @try_export
- def export_pb(keras_model, file, prefix=colorstr("TensorFlow GraphDef:")):
- """Exports YOLOv5 model to TensorFlow GraphDef *.pb format; see https://github.com/leimao/Frozen_Graph_TensorFlow for details."""
- import tensorflow as tf
- from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
- LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
- f = file.with_suffix(".pb")
- m = tf.function(lambda x: keras_model(x)) # full model
- m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
- frozen_func = convert_variables_to_constants_v2(m)
- frozen_func.graph.as_graph_def()
- tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
- return f, None
- @try_export
- def export_tflite(
- keras_model, im, file, int8, per_tensor, data, nms, agnostic_nms, prefix=colorstr("TensorFlow Lite:")
- ):
- # YOLOv5 TensorFlow Lite export
- import tensorflow as tf
- LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
- batch_size, ch, *imgsz = list(im.shape) # BCHW
- f = str(file).replace(".pt", "-fp16.tflite")
- converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
- converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
- converter.target_spec.supported_types = [tf.float16]
- converter.optimizations = [tf.lite.Optimize.DEFAULT]
- if int8:
- from models.tf import representative_dataset_gen
- dataset = LoadImages(check_dataset(check_yaml(data))["train"], img_size=imgsz, auto=False)
- converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
- converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
- converter.target_spec.supported_types = []
- converter.inference_input_type = tf.uint8 # or tf.int8
- converter.inference_output_type = tf.uint8 # or tf.int8
- converter.experimental_new_quantizer = True
- if per_tensor:
- converter._experimental_disable_per_channel = True
- f = str(file).replace(".pt", "-int8.tflite")
- if nms or agnostic_nms:
- converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
- tflite_model = converter.convert()
- open(f, "wb").write(tflite_model)
- return f, None
- @try_export
- def export_edgetpu(file, prefix=colorstr("Edge TPU:")):
- """
- Exports a YOLOv5 model to Edge TPU compatible TFLite format; requires Linux and Edge TPU compiler.
- https://coral.ai/docs/edgetpu/models-intro/
- """
- cmd = "edgetpu_compiler --version"
- help_url = "https://coral.ai/docs/edgetpu/compiler/"
- assert platform.system() == "Linux", f"export only supported on Linux. See {help_url}"
- if subprocess.run(f"{cmd} > /dev/null 2>&1", shell=True).returncode != 0:
- LOGGER.info(f"\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}")
- sudo = subprocess.run("sudo --version >/dev/null", shell=True).returncode == 0 # sudo installed on system
- for c in (
- "curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -",
- 'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
- "sudo apt-get update",
- "sudo apt-get install edgetpu-compiler",
- ):
- subprocess.run(c if sudo else c.replace("sudo ", ""), shell=True, check=True)
- ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
- LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...")
- f = str(file).replace(".pt", "-int8_edgetpu.tflite") # Edge TPU model
- f_tfl = str(file).replace(".pt", "-int8.tflite") # TFLite model
- subprocess.run(
- [
- "edgetpu_compiler",
- "-s",
- "-d",
- "-k",
- "10",
- "--out_dir",
- str(file.parent),
- f_tfl,
- ],
- check=True,
- )
- return f, None
- @try_export
- def export_tfjs(file, int8, prefix=colorstr("TensorFlow.js:")):
- """Exports a YOLOv5 model to TensorFlow.js format, optionally with uint8 quantization."""
- check_requirements("tensorflowjs")
- import tensorflowjs as tfjs
- LOGGER.info(f"\n{prefix} starting export with tensorflowjs {tfjs.__version__}...")
- f = str(file).replace(".pt", "_web_model") # js dir
- f_pb = file.with_suffix(".pb") # *.pb path
- f_json = f"{f}/model.json" # *.json path
- args = [
- "tensorflowjs_converter",
- "--input_format=tf_frozen_model",
- "--quantize_uint8" if int8 else "",
- "--output_node_names=Identity,Identity_1,Identity_2,Identity_3",
- str(f_pb),
- f,
- ]
- subprocess.run([arg for arg in args if arg], check=True)
- json = Path(f_json).read_text()
- with open(f_json, "w") as j: # sort JSON Identity_* in ascending order
- subst = re.sub(
- r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
- r'"Identity.?.?": {"name": "Identity.?.?"}, '
- r'"Identity.?.?": {"name": "Identity.?.?"}, '
- r'"Identity.?.?": {"name": "Identity.?.?"}}}',
- r'{"outputs": {"Identity": {"name": "Identity"}, '
- r'"Identity_1": {"name": "Identity_1"}, '
- r'"Identity_2": {"name": "Identity_2"}, '
- r'"Identity_3": {"name": "Identity_3"}}}',
- json,
- )
- j.write(subst)
- return f, None
- def add_tflite_metadata(file, metadata, num_outputs):
- """
- Adds TFLite metadata to a model file, supporting multiple outputs, as specified by TensorFlow guidelines.
- https://www.tensorflow.org/lite/models/convert/metadata
- """
- with contextlib.suppress(ImportError):
- # check_requirements('tflite_support')
- from tflite_support import flatbuffers
- from tflite_support import metadata as _metadata
- from tflite_support import metadata_schema_py_generated as _metadata_fb
- tmp_file = Path("/tmp/meta.txt")
- with open(tmp_file, "w") as meta_f:
- meta_f.write(str(metadata))
- model_meta = _metadata_fb.ModelMetadataT()
- label_file = _metadata_fb.AssociatedFileT()
- label_file.name = tmp_file.name
- model_meta.associatedFiles = [label_file]
- subgraph = _metadata_fb.SubGraphMetadataT()
- subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
- subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs
- model_meta.subgraphMetadata = [subgraph]
- b = flatbuffers.Builder(0)
- b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
- metadata_buf = b.Output()
- populator = _metadata.MetadataPopulator.with_model_file(file)
- populator.load_metadata_buffer(metadata_buf)
- populator.load_associated_files([str(tmp_file)])
- populator.populate()
- tmp_file.unlink()
- def pipeline_coreml(model, im, file, names, y, prefix=colorstr("CoreML Pipeline:")):
- """Converts a PyTorch YOLOv5 model to CoreML format with NMS, handling different input/output shapes and saving the
- model.
- """
- import coremltools as ct
- from PIL import Image
- print(f"{prefix} starting pipeline with coremltools {ct.__version__}...")
- batch_size, ch, h, w = list(im.shape) # BCHW
- t = time.time()
- # YOLOv5 Output shapes
- spec = model.get_spec()
- out0, out1 = iter(spec.description.output)
- if platform.system() == "Darwin":
- img = Image.new("RGB", (w, h)) # img(192 width, 320 height)
- # img = torch.zeros((*opt.img_size, 3)).numpy() # img size(320,192,3) iDetection
- out = model.predict({"image": img})
- out0_shape, out1_shape = out[out0.name].shape, out[out1.name].shape
- else: # linux and windows can not run model.predict(), get sizes from pytorch output y
- s = tuple(y[0].shape)
- out0_shape, out1_shape = (s[1], s[2] - 5), (s[1], 4) # (3780, 80), (3780, 4)
- # Checks
- nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height
- na, nc = out0_shape
- # na, nc = out0.type.multiArrayType.shape # number anchors, classes
- assert len(names) == nc, f"{len(names)} names found for nc={nc}" # check
- # Define output shapes (missing)
- out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80)
- out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4)
- # spec.neuralNetwork.preprocessing[0].featureName = '0'
- # Flexible input shapes
- # from coremltools.models.neural_network import flexible_shape_utils
- # s = [] # shapes
- # s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192))
- # s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384)) # (height, width)
- # flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s)
- # r = flexible_shape_utils.NeuralNetworkImageSizeRange() # shape ranges
- # r.add_height_range((192, 640))
- # r.add_width_range((192, 640))
- # flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r)
- # Print
- print(spec.description)
- # Model from spec
- model = ct.models.MLModel(spec)
- # 3. Create NMS protobuf
- nms_spec = ct.proto.Model_pb2.Model()
- nms_spec.specificationVersion = 5
- for i in range(2):
- decoder_output = model._spec.description.output[i].SerializeToString()
- nms_spec.description.input.add()
- nms_spec.description.input[i].ParseFromString(decoder_output)
- nms_spec.description.output.add()
- nms_spec.description.output[i].ParseFromString(decoder_output)
- nms_spec.description.output[0].name = "confidence"
- nms_spec.description.output[1].name = "coordinates"
- output_sizes = [nc, 4]
- for i in range(2):
- ma_type = nms_spec.description.output[i].type.multiArrayType
- ma_type.shapeRange.sizeRanges.add()
- ma_type.shapeRange.sizeRanges[0].lowerBound = 0
- ma_type.shapeRange.sizeRanges[0].upperBound = -1
- ma_type.shapeRange.sizeRanges.add()
- ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i]
- ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i]
- del ma_type.shape[:]
- nms = nms_spec.nonMaximumSuppression
- nms.confidenceInputFeatureName = out0.name # 1x507x80
- nms.coordinatesInputFeatureName = out1.name # 1x507x4
- nms.confidenceOutputFeatureName = "confidence"
- nms.coordinatesOutputFeatureName = "coordinates"
- nms.iouThresholdInputFeatureName = "iouThreshold"
- nms.confidenceThresholdInputFeatureName = "confidenceThreshold"
- nms.iouThreshold = 0.45
- nms.confidenceThreshold = 0.25
- nms.pickTop.perClass = True
- nms.stringClassLabels.vector.extend(names.values())
- nms_model = ct.models.MLModel(nms_spec)
- # 4. Pipeline models together
- pipeline = ct.models.pipeline.Pipeline(
- input_features=[
- ("image", ct.models.datatypes.Array(3, ny, nx)),
- ("iouThreshold", ct.models.datatypes.Double()),
- ("confidenceThreshold", ct.models.datatypes.Double()),
- ],
- output_features=["confidence", "coordinates"],
- )
- pipeline.add_model(model)
- pipeline.add_model(nms_model)
- # Correct datatypes
- pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString())
- pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString())
- pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())
- # Update metadata
- pipeline.spec.specificationVersion = 5
- pipeline.spec.description.metadata.versionString = "https://github.com/ultralytics/yolov5"
- pipeline.spec.description.metadata.shortDescription = "https://github.com/ultralytics/yolov5"
- pipeline.spec.description.metadata.author = "glenn.jocher@ultralytics.com"
- pipeline.spec.description.metadata.license = "https://github.com/ultralytics/yolov5/blob/master/LICENSE"
- pipeline.spec.description.metadata.userDefined.update(
- {
- "classes": ",".join(names.values()),
- "iou_threshold": str(nms.iouThreshold),
- "confidence_threshold": str(nms.confidenceThreshold),
- }
- )
- # Save the model
- f = file.with_suffix(".mlmodel") # filename
- model = ct.models.MLModel(pipeline.spec)
- model.input_description["image"] = "Input image"
- model.input_description["iouThreshold"] = f"(optional) IOU Threshold override (default: {nms.iouThreshold})"
- model.input_description["confidenceThreshold"] = (
- f"(optional) Confidence Threshold override (default: {nms.confidenceThreshold})"
- )
- model.output_description["confidence"] = 'Boxes × Class confidence (see user-defined metadata "classes")'
- model.output_description["coordinates"] = "Boxes × [x, y, width, height] (relative to image size)"
- model.save(f) # pipelined
- print(f"{prefix} pipeline success ({time.time() - t:.2f}s), saved as {f} ({file_size(f):.1f} MB)")
- @smart_inference_mode()
- def run(
- data=ROOT / "data/coco128.yaml", # 'dataset.yaml path'
- weights=ROOT / "yolov5s.pt", # weights path
- imgsz=(640, 640), # image (height, width)
- batch_size=1, # batch size
- device="cpu", # cuda device, i.e. 0 or 0,1,2,3 or cpu
- include=("torchscript", "onnx"), # include formats
- half=False, # FP16 half-precision export
- inplace=False, # set YOLOv5 Detect() inplace=True
- keras=False, # use Keras
- optimize=False, # TorchScript: optimize for mobile
- int8=False, # CoreML/TF INT8 quantization
- per_tensor=False, # TF per tensor quantization
- dynamic=False, # ONNX/TF/TensorRT: dynamic axes
- simplify=False, # ONNX: simplify model
- opset=12, # ONNX: opset version
- verbose=False, # TensorRT: verbose log
- workspace=4, # TensorRT: workspace size (GB)
- nms=False, # TF: add NMS to model
- agnostic_nms=False, # TF: add agnostic NMS to model
- topk_per_class=100, # TF.js NMS: topk per class to keep
- topk_all=100, # TF.js NMS: topk for all classes to keep
- iou_thres=0.45, # TF.js NMS: IoU threshold
- conf_thres=0.25, # TF.js NMS: confidence threshold
- ):
- t = time.time()
- include = [x.lower() for x in include] # to lowercase
- fmts = tuple(export_formats()["Argument"][1:]) # --include arguments
- flags = [x in include for x in fmts]
- assert sum(flags) == len(include), f"ERROR: Invalid --include {include}, valid --include arguments are {fmts}"
- jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans
- file = Path(url2file(weights) if str(weights).startswith(("http:/", "https:/")) else weights) # PyTorch weights
- # Load PyTorch model
- device = select_device(device)
- if half:
- assert device.type != "cpu" or coreml, "--half only compatible with GPU export, i.e. use --device 0"
- assert not dynamic, "--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both"
- model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model
- # Checks
- imgsz *= 2 if len(imgsz) == 1 else 1 # expand
- if optimize:
- assert device.type == "cpu", "--optimize not compatible with cuda devices, i.e. use --device cpu"
- # Input
- gs = int(max(model.stride)) # grid size (max stride)
- imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
- im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
- # Update model
- model.eval()
- for k, m in model.named_modules():
- if isinstance(m, Detect):
- m.inplace = inplace
- m.dynamic = dynamic
- m.export = True
- for _ in range(2):
- y = model(im) # dry runs
- if half and not coreml:
- im, model = im.half(), model.half() # to FP16
- shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape
- metadata = {"stride": int(max(model.stride)), "names": model.names} # model metadata
- LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
- # Exports
- f = [""] * len(fmts) # exported filenames
- warnings.filterwarnings(action="ignore", category=torch.jit.TracerWarning) # suppress TracerWarning
- if jit: # TorchScript
- f[0], _ = export_torchscript(model, im, file, optimize)
- if engine: # TensorRT required before ONNX
- f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
- if onnx or xml: # OpenVINO requires ONNX
- f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
- if xml: # OpenVINO
- f[3], _ = export_openvino(file, metadata, half, int8, data)
- if coreml: # CoreML
- f[4], ct_model = export_coreml(model, im, file, int8, half, nms)
- if nms:
- pipeline_coreml(ct_model, im, file, model.names, y)
- if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
- assert not tflite or not tfjs, "TFLite and TF.js models must be exported separately, please pass only one type."
- assert not isinstance(model, ClassificationModel), "ClassificationModel export to TF formats not yet supported."
- f[5], s_model = export_saved_model(
- model.cpu(),
- im,
- file,
- dynamic,
- tf_nms=nms or agnostic_nms or tfjs,
- agnostic_nms=agnostic_nms or tfjs,
- topk_per_class=topk_per_class,
- topk_all=topk_all,
- iou_thres=iou_thres,
- conf_thres=conf_thres,
- keras=keras,
- )
- if pb or tfjs: # pb prerequisite to tfjs
- f[6], _ = export_pb(s_model, file)
- if tflite or edgetpu:
- f[7], _ = export_tflite(
- s_model, im, file, int8 or edgetpu, per_tensor, data=data, nms=nms, agnostic_nms=agnostic_nms
- )
- if edgetpu:
- f[8], _ = export_edgetpu(file)
- add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs))
- if tfjs:
- f[9], _ = export_tfjs(file, int8)
- if paddle: # PaddlePaddle
- f[10], _ = export_paddle(model, im, file, metadata)
- # Finish
- f = [str(x) for x in f if x] # filter out '' and None
- if any(f):
- cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type
- det &= not seg # segmentation models inherit from SegmentationModel(DetectionModel)
- dir = Path("segment" if seg else "classify" if cls else "")
- h = "--half" if half else "" # --half FP16 inference arg
- s = (
- "# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference"
- if cls
- else "# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference"
- if seg
- else ""
- )
- LOGGER.info(
- f'\nExport complete ({time.time() - t:.1f}s)'
- f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
- f"\nDetect: python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}"
- f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}"
- f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}"
- f'\nVisualize: https://netron.app'
- )
- return f # return list of exported files/dirs
- def parse_opt(known=False):
- """Parses command-line arguments for YOLOv5 model export configurations, returning the parsed options."""
- parser = argparse.ArgumentParser()
- parser.add_argument("--data", type=str, default=ROOT / "data/Neck-Organ-Seg.yaml", help="dataset.yaml path")
- parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "runs/train/exp56/weights/best.pt", help="model.pt path(s)")
- parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[320, 320], help="image (h, w)")
- parser.add_argument("--batch-size", type=int, default=1, help="batch size")
- parser.add_argument("--device", default="cpu", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
- parser.add_argument("--half", action="store_true", help="FP16 half-precision export")
- parser.add_argument("--inplace", action="store_true", help="set YOLOv5 Detect() inplace=True")
- parser.add_argument("--keras", action="store_true", help="TF: use Keras")
- parser.add_argument("--optimize", action="store_true", help="TorchScript: optimize for mobile")
- parser.add_argument("--int8", action="store_true", help="CoreML/TF/OpenVINO INT8 quantization")
- parser.add_argument("--per-tensor", action="store_true", help="TF per-tensor quantization")
- parser.add_argument("--dynamic", action="store_true", help="ONNX/TF/TensorRT: dynamic axes")
- parser.add_argument("--simplify", action="store_true", help="ONNX: simplify model")
- parser.add_argument("--opset", type=int, default=17, help="ONNX: opset version")
- parser.add_argument("--verbose", action="store_true", help="TensorRT: verbose log")
- parser.add_argument("--workspace", type=int, default=4, help="TensorRT: workspace size (GB)")
- parser.add_argument("--nms", action="store_true", help="TF: add NMS to model")
- parser.add_argument("--agnostic-nms", action="store_true", help="TF: add agnostic NMS to model")
- parser.add_argument("--topk-per-class", type=int, default=100, help="TF.js NMS: topk per class to keep")
- parser.add_argument("--topk-all", type=int, default=100, help="TF.js NMS: topk for all classes to keep")
- parser.add_argument("--iou-thres", type=float, default=0.45, help="TF.js NMS: IoU threshold")
- parser.add_argument("--conf-thres", type=float, default=0.25, help="TF.js NMS: confidence threshold")
- parser.add_argument(
- "--include",
- nargs="+",
- default=["onnx"],
- help="torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle",
- )
- opt = parser.parse_known_args()[0] if known else parser.parse_args()
- print_args(vars(opt))
- return opt
- def main(opt):
- """Executes the YOLOv5 model inference or export with specified weights and options."""
- for opt.weights in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
- run(**vars(opt))
- if __name__ == "__main__":
- opt = parse_opt()
- main(opt)
|