123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311 |
- # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
- """
- Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
- Usage - sources:
- $ python detect.py --weights yolov5s.pt --source 0 # webcam
- img.jpg # image
- vid.mp4 # video
- screen # screenshot
- path/ # directory
- list.txt # list of images
- list.streams # list of streams
- 'path/*.jpg' # glob
- 'https://youtu.be/LNwODJXcvt4' # YouTube
- 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
- Usage - formats:
- $ python detect.py --weights yolov5s.pt # PyTorch
- yolov5s.torchscript # TorchScript
- yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
- yolov5s_openvino_model # OpenVINO
- yolov5s.engine # TensorRT
- yolov5s.mlmodel # CoreML (macOS-only)
- yolov5s_saved_model # TensorFlow SavedModel
- yolov5s.pb # TensorFlow GraphDef
- yolov5s.tflite # TensorFlow Lite
- yolov5s_edgetpu.tflite # TensorFlow Edge TPU
- yolov5s_paddle_model # PaddlePaddle
- """
- import argparse
- import csv
- import os
- import platform
- import sys
- from pathlib import Path
- import torch
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[0] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
- from ultralytics.utils.plotting import Annotator, colors, save_one_box
- from models.common import DetectMultiBackend
- from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
- from utils.general import (
- LOGGER,
- Profile,
- check_file,
- check_img_size,
- check_imshow,
- colorstr,
- cv2,
- increment_path,
- non_max_suppression,
- print_args,
- scale_boxes,
- strip_optimizer,
- xyxy2xywh,
- )
- from utils.torch_utils import select_device, smart_inference_mode
- @smart_inference_mode()
- def run(
- weights=ROOT / "yolov5s.pt", # model path or triton URL
- source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam)
- data=ROOT / "data/coco128.yaml", # dataset.yaml path
- imgsz=(640, 640), # inference size (height, width)
- conf_thres=0.25, # confidence threshold
- iou_thres=0.45, # NMS IOU threshold
- max_det=1000, # maximum detections per image
- device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
- view_img=False, # show results
- save_txt=False, # save results to *.txt
- save_csv=False, # save results in CSV format
- save_conf=False, # save confidences in --save-txt labels
- save_crop=False, # save cropped prediction boxes
- nosave=False, # do not save images/videos
- classes=None, # filter by class: --class 0, or --class 0 2 3
- agnostic_nms=False, # class-agnostic NMS
- augment=False, # augmented inference
- visualize=False, # visualize features
- update=False, # update all models
- project=ROOT / "runs/detect", # save results to project/name
- name="exp", # save results to project/name
- exist_ok=False, # existing project/name ok, do not increment
- line_thickness=3, # bounding box thickness (pixels)
- hide_labels=False, # hide labels
- hide_conf=False, # hide confidences
- half=False, # use FP16 half-precision inference
- dnn=False, # use OpenCV DNN for ONNX inference
- vid_stride=1, # video frame-rate stride
- ):
- source = str(source)
- save_img = not nosave and not source.endswith(".txt") # save inference images
- is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
- is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
- webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
- screenshot = source.lower().startswith("screen")
- if is_url and is_file:
- source = check_file(source) # download
- # Directories
- save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
- (save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
- # Load model
- device = select_device(device)
- model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
- stride, names, pt = model.stride, model.names, model.pt
- imgsz = check_img_size(imgsz, s=stride) # check image size
- # Dataloader
- bs = 1 # batch_size
- if webcam:
- view_img = check_imshow(warn=True)
- dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
- bs = len(dataset)
- elif screenshot:
- dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
- else:
- dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
- vid_path, vid_writer = [None] * bs, [None] * bs
- # Run inference
- model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
- seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
- for path, im, im0s, vid_cap, s in dataset:
- with dt[0]:
- im = torch.from_numpy(im).to(model.device)
- im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
- im /= 255 # 0 - 255 to 0.0 - 1.0
- if len(im.shape) == 3:
- im = im[None] # expand for batch dim
- if model.xml and im.shape[0] > 1:
- ims = torch.chunk(im, im.shape[0], 0)
- # Inference
- with dt[1]:
- visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
- if model.xml and im.shape[0] > 1:
- pred = None
- for image in ims:
- if pred is None:
- pred = model(image, augment=augment, visualize=visualize).unsqueeze(0)
- else:
- pred = torch.cat((pred, model(image, augment=augment, visualize=visualize).unsqueeze(0)), dim=0)
- pred = [pred, None]
- else:
- pred = model(im, augment=augment, visualize=visualize)
- # NMS
- with dt[2]:
- pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
- # Second-stage classifier (optional)
- # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
- # Define the path for the CSV file
- csv_path = save_dir / "predictions.csv"
- # Create or append to the CSV file
- def write_to_csv(image_name, prediction, confidence):
- """Writes prediction data for an image to a CSV file, appending if the file exists."""
- data = {"Image Name": image_name, "Prediction": prediction, "Confidence": confidence}
- with open(csv_path, mode="a", newline="") as f:
- writer = csv.DictWriter(f, fieldnames=data.keys())
- if not csv_path.is_file():
- writer.writeheader()
- writer.writerow(data)
- # Process predictions
- for i, det in enumerate(pred): # per image
- seen += 1
- if webcam: # batch_size >= 1
- p, im0, frame = path[i], im0s[i].copy(), dataset.count
- s += f"{i}: "
- else:
- p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)
- p = Path(p) # to Path
- save_path = str(save_dir / p.name) # im.jpg
- txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") # im.txt
- s += "%gx%g " % im.shape[2:] # print string
- gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
- imc = im0.copy() if save_crop else im0 # for save_crop
- annotator = Annotator(im0, line_width=line_thickness, example=str(names))
- if len(det):
- # Rescale boxes from img_size to im0 size
- det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
- # Print results
- for c in det[:, 5].unique():
- n = (det[:, 5] == c).sum() # detections per class
- s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
- # Write results
- for *xyxy, conf, cls in reversed(det):
- c = int(cls) # integer class
- label = names[c] if hide_conf else f"{names[c]}"
- confidence = float(conf)
- confidence_str = f"{confidence:.2f}"
- if save_csv:
- write_to_csv(p.name, label, confidence_str)
- if save_txt: # Write to file
- xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
- line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
- with open(f"{txt_path}.txt", "a") as f:
- f.write(("%g " * len(line)).rstrip() % line + "\n")
- if save_img or save_crop or view_img: # Add bbox to image
- c = int(cls) # integer class
- label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}")
- annotator.box_label(xyxy, label, color=colors(c, True))
- if save_crop:
- save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True)
- # Stream results
- im0 = annotator.result()
- if view_img:
- if platform.system() == "Linux" and p not in windows:
- windows.append(p)
- cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
- cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
- cv2.imshow(str(p), im0)
- cv2.waitKey(1) # 1 millisecond
- # Save results (image with detections)
- if save_img:
- if dataset.mode == "image":
- cv2.imwrite(save_path, im0)
- else: # 'video' or 'stream'
- if vid_path[i] != save_path: # new video
- vid_path[i] = save_path
- if isinstance(vid_writer[i], cv2.VideoWriter):
- vid_writer[i].release() # release previous video writer
- if vid_cap: # video
- fps = vid_cap.get(cv2.CAP_PROP_FPS)
- w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
- h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
- else: # stream
- fps, w, h = 30, im0.shape[1], im0.shape[0]
- save_path = str(Path(save_path).with_suffix(".mp4")) # force *.mp4 suffix on results videos
- vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
- vid_writer[i].write(im0)
- # Print time (inference-only)
- LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
- # Print results
- t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
- LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
- if save_txt or save_img:
- s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
- LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
- if update:
- strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
- def parse_opt():
- """Parses command-line arguments for YOLOv5 detection, setting inference options and model configurations."""
- parser = argparse.ArgumentParser()
- parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path or triton URL")
- parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
- parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")
- parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w")
- parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold")
- parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold")
- parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image")
- parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
- parser.add_argument("--view-img", action="store_true", help="show results")
- parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
- parser.add_argument("--save-csv", action="store_true", help="save results in CSV format")
- parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
- parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes")
- parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
- parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3")
- parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS")
- parser.add_argument("--augment", action="store_true", help="augmented inference")
- parser.add_argument("--visualize", action="store_true", help="visualize features")
- parser.add_argument("--update", action="store_true", help="update all models")
- parser.add_argument("--project", default=ROOT / "runs/detect", help="save results to project/name")
- parser.add_argument("--name", default="exp", help="save results to project/name")
- parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
- parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)")
- parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels")
- parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences")
- parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
- parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
- parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
- opt = parser.parse_args()
- opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
- print_args(vars(opt))
- return opt
- def main(opt):
- """Executes YOLOv5 model inference with given options, checking requirements before running the model."""
- check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
- run(**vars(opt))
- if __name__ == "__main__":
- opt = parse_opt()
- main(opt)
|