123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
- """
- Run YOLOv5 benchmarks on all supported export formats.
- Format | `export.py --include` | Model
- --- | --- | ---
- PyTorch | - | yolov5s.pt
- TorchScript | `torchscript` | yolov5s.torchscript
- ONNX | `onnx` | yolov5s.onnx
- OpenVINO | `openvino` | yolov5s_openvino_model/
- TensorRT | `engine` | yolov5s.engine
- CoreML | `coreml` | yolov5s.mlmodel
- TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
- TensorFlow GraphDef | `pb` | yolov5s.pb
- TensorFlow Lite | `tflite` | yolov5s.tflite
- TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
- TensorFlow.js | `tfjs` | yolov5s_web_model/
- Requirements:
- $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
- $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
- $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
- Usage:
- $ python benchmarks.py --weights yolov5s.pt --img 640
- """
- import argparse
- import platform
- import sys
- import time
- from pathlib import Path
- import pandas as pd
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[0] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- # ROOT = ROOT.relative_to(Path.cwd()) # relative
- import export
- from models.experimental import attempt_load
- from models.yolo import SegmentationModel
- from segment.val import run as val_seg
- from utils import notebook_init
- from utils.general import LOGGER, check_yaml, file_size, print_args
- from utils.torch_utils import select_device
- from val import run as val_det
- def run(
- weights=ROOT / "yolov5s.pt", # weights path
- imgsz=640, # inference size (pixels)
- batch_size=1, # batch size
- data=ROOT / "data/coco128.yaml", # dataset.yaml path
- device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
- half=False, # use FP16 half-precision inference
- test=False, # test exports only
- pt_only=False, # test PyTorch only
- hard_fail=False, # throw error on benchmark failure
- ):
- y, t = [], time.time()
- device = select_device(device)
- model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
- for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
- try:
- assert i not in (9, 10), "inference not supported" # Edge TPU and TF.js are unsupported
- assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13" # CoreML
- if "cpu" in device.type:
- assert cpu, "inference not supported on CPU"
- if "cuda" in device.type:
- assert gpu, "inference not supported on GPU"
- # Export
- if f == "-":
- w = weights # PyTorch format
- else:
- w = export.run(
- weights=weights, imgsz=[imgsz], include=[f], batch_size=batch_size, device=device, half=half
- )[-1] # all others
- assert suffix in str(w), "export failed"
- # Validate
- if model_type == SegmentationModel:
- result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
- metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
- else: # DetectionModel:
- result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half)
- metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
- speed = result[2][1] # times (preprocess, inference, postprocess)
- y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
- except Exception as e:
- if hard_fail:
- assert type(e) is AssertionError, f"Benchmark --hard-fail for {name}: {e}"
- LOGGER.warning(f"WARNING ⚠️ Benchmark failure for {name}: {e}")
- y.append([name, None, None, None]) # mAP, t_inference
- if pt_only and i == 0:
- break # break after PyTorch
- # Print results
- LOGGER.info("\n")
- parse_opt()
- notebook_init() # print system info
- c = ["Format", "Size (MB)", "mAP50-95", "Inference time (ms)"] if map else ["Format", "Export", "", ""]
- py = pd.DataFrame(y, columns=c)
- LOGGER.info(f"\nBenchmarks complete ({time.time() - t:.2f}s)")
- LOGGER.info(str(py if map else py.iloc[:, :2]))
- if hard_fail and isinstance(hard_fail, str):
- metrics = py["mAP50-95"].array # values to compare to floor
- floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
- assert all(x > floor for x in metrics if pd.notna(x)), f"HARD FAIL: mAP50-95 < floor {floor}"
- return py
- def test(
- weights=ROOT / "yolov5s.pt", # weights path
- imgsz=640, # inference size (pixels)
- batch_size=1, # batch size
- data=ROOT / "data/coco128.yaml", # dataset.yaml path
- device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
- half=False, # use FP16 half-precision inference
- test=False, # test exports only
- pt_only=False, # test PyTorch only
- hard_fail=False, # throw error on benchmark failure
- ):
- y, t = [], time.time()
- device = select_device(device)
- for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
- try:
- w = (
- weights
- if f == "-"
- else export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1]
- ) # weights
- assert suffix in str(w), "export failed"
- y.append([name, True])
- except Exception:
- y.append([name, False]) # mAP, t_inference
- # Print results
- LOGGER.info("\n")
- parse_opt()
- notebook_init() # print system info
- py = pd.DataFrame(y, columns=["Format", "Export"])
- LOGGER.info(f"\nExports complete ({time.time() - t:.2f}s)")
- LOGGER.info(str(py))
- return py
- def parse_opt():
- """Parses command-line arguments for YOLOv5 model inference configuration."""
- parser = argparse.ArgumentParser()
- parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="weights path")
- parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)")
- parser.add_argument("--batch-size", type=int, default=1, help="batch size")
- parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
- parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
- parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
- parser.add_argument("--test", action="store_true", help="test exports only")
- parser.add_argument("--pt-only", action="store_true", help="test PyTorch only")
- parser.add_argument("--hard-fail", nargs="?", const=True, default=False, help="Exception on error or < min metric")
- opt = parser.parse_args()
- opt.data = check_yaml(opt.data) # check YAML
- print_args(vars(opt))
- return opt
- def main(opt):
- """Executes a test run if `opt.test` is True, otherwise starts training or inference with provided options."""
- test(**vars(opt)) if opt.test else run(**vars(opt))
- if __name__ == "__main__":
- opt = parse_opt()
- main(opt)
|