123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445 |
- # -*- coding: utf-8 -*-
- '''
- @Time : 2020/05/06 21:09
- @Author : Tianxiaomo
- @File : dataset.py
- @Noice :
- @Modificattion :
- @Author :
- @Time :
- @Detail :
- '''
- import os
- import random
- import sys
- import cv2
- import numpy as np
- import torch
- from torch.utils.data.dataset import Dataset
- def rand_uniform_strong(min, max):
- if min > max:
- swap = min
- min = max
- max = swap
- return random.random() * (max - min) + min
- def rand_scale(s):
- scale = rand_uniform_strong(1, s)
- if random.randint(0, 1) % 2:
- return scale
- return 1. / scale
- def rand_precalc_random(min, max, random_part):
- if max < min:
- swap = min
- min = max
- max = swap
- return (random_part * (max - min)) + min
- def fill_truth_detection(bboxes, num_boxes, classes, flip, dx, dy, sx, sy, net_w, net_h):
- if bboxes.shape[0] == 0:
- return bboxes, 10000
- np.random.shuffle(bboxes)
- bboxes[:, 0] -= dx
- bboxes[:, 2] -= dx
- bboxes[:, 1] -= dy
- bboxes[:, 3] -= dy
- bboxes[:, 0] = np.clip(bboxes[:, 0], 0, sx)
- bboxes[:, 2] = np.clip(bboxes[:, 2], 0, sx)
- bboxes[:, 1] = np.clip(bboxes[:, 1], 0, sy)
- bboxes[:, 3] = np.clip(bboxes[:, 3], 0, sy)
- out_box = list(np.where(((bboxes[:, 1] == sy) & (bboxes[:, 3] == sy)) |
- ((bboxes[:, 0] == sx) & (bboxes[:, 2] == sx)) |
- ((bboxes[:, 1] == 0) & (bboxes[:, 3] == 0)) |
- ((bboxes[:, 0] == 0) & (bboxes[:, 2] == 0)))[0])
- list_box = list(range(bboxes.shape[0]))
- for i in out_box:
- list_box.remove(i)
- bboxes = bboxes[list_box]
- if bboxes.shape[0] == 0:
- return bboxes, 10000
- bboxes = bboxes[np.where((bboxes[:, 4] < classes) & (bboxes[:, 4] >= 0))[0]]
- if bboxes.shape[0] > num_boxes:
- bboxes = bboxes[:num_boxes]
- min_w_h = np.array([bboxes[:, 2] - bboxes[:, 0], bboxes[:, 3] - bboxes[:, 1]]).min()
- bboxes[:, 0] *= (net_w / sx)
- bboxes[:, 2] *= (net_w / sx)
- bboxes[:, 1] *= (net_h / sy)
- bboxes[:, 3] *= (net_h / sy)
- if flip:
- temp = net_w - bboxes[:, 0]
- bboxes[:, 0] = net_w - bboxes[:, 2]
- bboxes[:, 2] = temp
- return bboxes, min_w_h
- def rect_intersection(a, b):
- minx = max(a[0], b[0])
- miny = max(a[1], b[1])
- maxx = min(a[2], b[2])
- maxy = min(a[3], b[3])
- return [minx, miny, maxx, maxy]
- def image_data_augmentation(mat, w, h, pleft, ptop, swidth, sheight, flip, dhue, dsat, dexp, gaussian_noise, blur,
- truth):
- try:
- img = mat
- oh, ow, _ = img.shape
- pleft, ptop, swidth, sheight = int(pleft), int(ptop), int(swidth), int(sheight)
- # crop
- src_rect = [pleft, ptop, swidth + pleft, sheight + ptop] # x1,y1,x2,y2
- img_rect = [0, 0, ow, oh]
- new_src_rect = rect_intersection(src_rect, img_rect) # 交集
- dst_rect = [max(0, -pleft), max(0, -ptop), max(0, -pleft) + new_src_rect[2] - new_src_rect[0],
- max(0, -ptop) + new_src_rect[3] - new_src_rect[1]]
- # cv2.Mat sized
- if (src_rect[0] == 0 and src_rect[1] == 0 and src_rect[2] == img.shape[0] and src_rect[3] == img.shape[1]):
- sized = cv2.resize(img, (w, h), cv2.INTER_LINEAR)
- else:
- cropped = np.zeros([sheight, swidth, 3])
- cropped[:, :, ] = np.mean(img, axis=(0, 1))
- cropped[dst_rect[1]:dst_rect[3], dst_rect[0]:dst_rect[2]] = \
- img[new_src_rect[1]:new_src_rect[3], new_src_rect[0]:new_src_rect[2]]
- # resize
- sized = cv2.resize(cropped, (w, h), cv2.INTER_LINEAR)
- # flip
- if flip:
- # cv2.Mat cropped
- sized = cv2.flip(sized, 1) # 0 - x-axis, 1 - y-axis, -1 - both axes (x & y)
- # HSV augmentation
- # cv2.COLOR_BGR2HSV, cv2.COLOR_RGB2HSV, cv2.COLOR_HSV2BGR, cv2.COLOR_HSV2RGB
- if dsat != 1 or dexp != 1 or dhue != 0:
- if img.shape[2] >= 3:
- hsv_src = cv2.cvtColor(sized.astype(np.float32), cv2.COLOR_RGB2HSV) # RGB to HSV
- hsv = cv2.split(hsv_src)
- hsv[1] *= dsat
- hsv[2] *= dexp
- hsv[0] += 179 * dhue
- hsv_src = cv2.merge(hsv)
- sized = np.clip(cv2.cvtColor(hsv_src, cv2.COLOR_HSV2RGB), 0, 255) # HSV to RGB (the same as previous)
- else:
- sized *= dexp
- if blur:
- if blur == 1:
- dst = cv2.GaussianBlur(sized, (17, 17), 0)
- # cv2.bilateralFilter(sized, dst, 17, 75, 75)
- else:
- ksize = (blur / 2) * 2 + 1
- dst = cv2.GaussianBlur(sized, (ksize, ksize), 0)
- if blur == 1:
- img_rect = [0, 0, sized.cols, sized.rows]
- for b in truth:
- left = (b.x - b.w / 2.) * sized.shape[1]
- width = b.w * sized.shape[1]
- top = (b.y - b.h / 2.) * sized.shape[0]
- height = b.h * sized.shape[0]
- roi(left, top, width, height)
- roi = roi & img_rect
- dst[roi[0]:roi[0] + roi[2], roi[1]:roi[1] + roi[3]] = sized[roi[0]:roi[0] + roi[2],
- roi[1]:roi[1] + roi[3]]
- sized = dst
- if gaussian_noise:
- noise = np.array(sized.shape)
- gaussian_noise = min(gaussian_noise, 127)
- gaussian_noise = max(gaussian_noise, 0)
- cv2.randn(noise, 0, gaussian_noise) # mean and variance
- sized = sized + noise
- except:
- print("OpenCV can't augment image: " + str(w) + " x " + str(h))
- sized = mat
- return sized
- def filter_truth(bboxes, dx, dy, sx, sy, xd, yd):
- bboxes[:, 0] -= dx
- bboxes[:, 2] -= dx
- bboxes[:, 1] -= dy
- bboxes[:, 3] -= dy
- bboxes[:, 0] = np.clip(bboxes[:, 0], 0, sx)
- bboxes[:, 2] = np.clip(bboxes[:, 2], 0, sx)
- bboxes[:, 1] = np.clip(bboxes[:, 1], 0, sy)
- bboxes[:, 3] = np.clip(bboxes[:, 3], 0, sy)
- out_box = list(np.where(((bboxes[:, 1] == sy) & (bboxes[:, 3] == sy)) |
- ((bboxes[:, 0] == sx) & (bboxes[:, 2] == sx)) |
- ((bboxes[:, 1] == 0) & (bboxes[:, 3] == 0)) |
- ((bboxes[:, 0] == 0) & (bboxes[:, 2] == 0)))[0])
- list_box = list(range(bboxes.shape[0]))
- for i in out_box:
- list_box.remove(i)
- bboxes = bboxes[list_box]
- bboxes[:, 0] += xd
- bboxes[:, 2] += xd
- bboxes[:, 1] += yd
- bboxes[:, 3] += yd
- return bboxes
- def blend_truth_mosaic(out_img, img, bboxes, w, h, cut_x, cut_y, i_mixup,
- left_shift, right_shift, top_shift, bot_shift):
- left_shift = min(left_shift, w - cut_x)
- top_shift = min(top_shift, h - cut_y)
- right_shift = min(right_shift, cut_x)
- bot_shift = min(bot_shift, cut_y)
- if i_mixup == 0:
- bboxes = filter_truth(bboxes, left_shift, top_shift, cut_x, cut_y, 0, 0)
- out_img[:cut_y, :cut_x] = img[top_shift:top_shift + cut_y, left_shift:left_shift + cut_x]
- if i_mixup == 1:
- bboxes = filter_truth(bboxes, cut_x - right_shift, top_shift, w - cut_x, cut_y, cut_x, 0)
- out_img[:cut_y, cut_x:] = img[top_shift:top_shift + cut_y, cut_x - right_shift:w - right_shift]
- if i_mixup == 2:
- bboxes = filter_truth(bboxes, left_shift, cut_y - bot_shift, cut_x, h - cut_y, 0, cut_y)
- out_img[cut_y:, :cut_x] = img[cut_y - bot_shift:h - bot_shift, left_shift:left_shift + cut_x]
- if i_mixup == 3:
- bboxes = filter_truth(bboxes, cut_x - right_shift, cut_y - bot_shift, w - cut_x, h - cut_y, cut_x, cut_y)
- out_img[cut_y:, cut_x:] = img[cut_y - bot_shift:h - bot_shift, cut_x - right_shift:w - right_shift]
- return out_img, bboxes
- def draw_box(img, bboxes):
- for b in bboxes:
- img = cv2.rectangle(img, (b[0], b[1]), (b[2], b[3]), (0, 255, 0), 2)
- return img
- class Yolo_dataset(Dataset):
- def __init__(self, lable_path, cfg, train=True):
- super(Yolo_dataset, self).__init__()
- if cfg.mixup == 2:
- print("cutmix=1 - isn't supported for Detector")
- raise
- elif cfg.mixup == 2 and cfg.letter_box:
- print("Combination: letter_box=1 & mosaic=1 - isn't supported, use only 1 of these parameters")
- raise
- self.cfg = cfg
- self.train = train
- truth = {}
- f = open(lable_path, 'r', encoding='utf-8')
- for line in f.readlines():
- data = line.split(" ")
- truth[data[0]] = []
- for i in data[1:]:
- truth[data[0]].append([int(float(j)) for j in i.split(',')])
- self.truth = truth
- self.imgs = list(self.truth.keys())
- def __len__(self):
- return len(self.truth.keys())
- def __getitem__(self, index):
- if not self.train:
- return self._get_val_item(index)
- img_path = self.imgs[index]
- bboxes = np.array(self.truth.get(img_path), dtype=np.float)
- img_path = os.path.join(self.cfg.dataset_dir, img_path)
- use_mixup = self.cfg.mixup
- if random.randint(0, 1):
- use_mixup = 0
- if use_mixup == 3:
- min_offset = 0.2
- cut_x = random.randint(int(self.cfg.w * min_offset), int(self.cfg.w * (1 - min_offset)))
- cut_y = random.randint(int(self.cfg.h * min_offset), int(self.cfg.h * (1 - min_offset)))
- r1, r2, r3, r4, r_scale = 0, 0, 0, 0, 0
- dhue, dsat, dexp, flip, blur = 0, 0, 0, 0, 0
- gaussian_noise = 0
- out_img = np.zeros([self.cfg.h, self.cfg.w, 3])
- out_bboxes = []
- for i in range(use_mixup + 1):
- if i != 0:
- img_path = random.choice(list(self.truth.keys()))
- bboxes = np.array(self.truth.get(img_path), dtype=np.float)
- img_path = os.path.join(self.cfg.dataset_dir, img_path)
- img = cv2.imread(img_path)
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
- if img is None:
- continue
- oh, ow, oc = img.shape
- dh, dw, dc = np.array(np.array([oh, ow, oc]) * self.cfg.jitter, dtype=np.int)
- dhue = rand_uniform_strong(-self.cfg.hue, self.cfg.hue)
- dsat = rand_scale(self.cfg.saturation)
- dexp = rand_scale(self.cfg.exposure)
- pleft = random.randint(-dw, dw)
- pright = random.randint(-dw, dw)
- ptop = random.randint(-dh, dh)
- pbot = random.randint(-dh, dh)
- flip = random.randint(0, 1) if self.cfg.flip else 0
- if (self.cfg.blur):
- tmp_blur = random.randint(0, 2) # 0 - disable, 1 - blur background, 2 - blur the whole image
- if tmp_blur == 0:
- blur = 0
- elif tmp_blur == 1:
- blur = 1
- else:
- blur = self.cfg.blur
- if self.cfg.gaussian and random.randint(0, 1):
- gaussian_noise = self.cfg.gaussian
- else:
- gaussian_noise = 0
- if self.cfg.letter_box:
- img_ar = ow / oh
- net_ar = self.cfg.w / self.cfg.h
- result_ar = img_ar / net_ar
- # print(" ow = %d, oh = %d, w = %d, h = %d, img_ar = %f, net_ar = %f, result_ar = %f \n", ow, oh, w, h, img_ar, net_ar, result_ar);
- if result_ar > 1: # sheight - should be increased
- oh_tmp = ow / net_ar
- delta_h = (oh_tmp - oh) / 2
- ptop = ptop - delta_h
- pbot = pbot - delta_h
- # print(" result_ar = %f, oh_tmp = %f, delta_h = %d, ptop = %f, pbot = %f \n", result_ar, oh_tmp, delta_h, ptop, pbot);
- else: # swidth - should be increased
- ow_tmp = oh * net_ar
- delta_w = (ow_tmp - ow) / 2
- pleft = pleft - delta_w
- pright = pright - delta_w
- # printf(" result_ar = %f, ow_tmp = %f, delta_w = %d, pleft = %f, pright = %f \n", result_ar, ow_tmp, delta_w, pleft, pright);
- swidth = ow - pleft - pright
- sheight = oh - ptop - pbot
- truth, min_w_h = fill_truth_detection(bboxes, self.cfg.boxes, self.cfg.classes, flip, pleft, ptop, swidth,
- sheight, self.cfg.w, self.cfg.h)
- if (min_w_h / 8) < blur and blur > 1: # disable blur if one of the objects is too small
- blur = min_w_h / 8
- ai = image_data_augmentation(img, self.cfg.w, self.cfg.h, pleft, ptop, swidth, sheight, flip,
- dhue, dsat, dexp, gaussian_noise, blur, truth)
- if use_mixup == 0:
- out_img = ai
- out_bboxes = truth
- if use_mixup == 1:
- if i == 0:
- old_img = ai.copy()
- old_truth = truth.copy()
- elif i == 1:
- out_img = cv2.addWeighted(ai, 0.5, old_img, 0.5)
- out_bboxes = np.concatenate([old_truth, truth], axis=0)
- elif use_mixup == 3:
- if flip:
- tmp = pleft
- pleft = pright
- pright = tmp
- left_shift = int(min(cut_x, max(0, (-int(pleft) * self.cfg.w / swidth))))
- top_shift = int(min(cut_y, max(0, (-int(ptop) * self.cfg.h / sheight))))
- right_shift = int(min((self.cfg.w - cut_x), max(0, (-int(pright) * self.cfg.w / swidth))))
- bot_shift = int(min(self.cfg.h - cut_y, max(0, (-int(pbot) * self.cfg.h / sheight))))
- out_img, out_bbox = blend_truth_mosaic(out_img, ai, truth.copy(), self.cfg.w, self.cfg.h, cut_x,
- cut_y, i, left_shift, right_shift, top_shift, bot_shift)
- out_bboxes.append(out_bbox)
- # print(img_path)
- if use_mixup == 3:
- out_bboxes = np.concatenate(out_bboxes, axis=0)
- out_bboxes1 = np.zeros([self.cfg.boxes, 5])
- out_bboxes1[:min(out_bboxes.shape[0], self.cfg.boxes)] = out_bboxes[:min(out_bboxes.shape[0], self.cfg.boxes)]
- return out_img, out_bboxes1
- def _get_val_item(self, index):
- """
- """
- img_path = self.imgs[index]
- bboxes_with_cls_id = np.array(self.truth.get(img_path), dtype=np.float)
- img = cv2.imread(os.path.join(self.cfg.dataset_dir, img_path))
- # img_height, img_width = img.shape[:2]
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
- # img = cv2.resize(img, (self.cfg.w, self.cfg.h))
- # img = torch.from_numpy(img.transpose(2, 0, 1)).float().div(255.0).unsqueeze(0)
- num_objs = len(bboxes_with_cls_id)
- target = {}
- # boxes to coco format
- boxes = bboxes_with_cls_id[...,:4]
- boxes[..., 2:] = boxes[..., 2:] - boxes[..., :2] # box width, box height
- target['boxes'] = torch.as_tensor(boxes, dtype=torch.float32)
- target['labels'] = torch.as_tensor(bboxes_with_cls_id[...,-1].flatten(), dtype=torch.int64)
- target['image_id'] = torch.tensor([get_image_id(img_path)])
- target['area'] = (target['boxes'][:,3])*(target['boxes'][:,2])
- target['iscrowd'] = torch.zeros((num_objs,), dtype=torch.int64)
- return img, target
- def get_image_id(filename:str) -> int:
- """
- Convert a string to a integer.
- Make sure that the images and the `image_id`s are in one-one correspondence.
- There are already `image_id`s in annotations of the COCO dataset,
- in which case this function is unnecessary.
- For creating one's own `get_image_id` function, one can refer to
- https://github.com/google/automl/blob/master/efficientdet/dataset/create_pascal_tfrecord.py#L86
- or refer to the following code (where the filenames are like 'level1_123.jpg')
- >>> lv, no = os.path.splitext(os.path.basename(filename))[0].split("_")
- >>> lv = lv.replace("level", "")
- >>> no = f"{int(no):04d}"
- >>> return int(lv+no)
- """
- raise NotImplementedError("Create your own 'get_image_id' function")
- lv, no = os.path.splitext(os.path.basename(filename))[0].split("_")
- lv = lv.replace("level", "")
- no = f"{int(no):04d}"
- return int(lv+no)
- if __name__ == "__main__":
- from cfg import Cfg
- import matplotlib.pyplot as plt
- random.seed(2020)
- np.random.seed(2020)
- Cfg.dataset_dir = '/mnt/e/Dataset'
- dataset = Yolo_dataset(Cfg.train_label, Cfg)
- for i in range(100):
- out_img, out_bboxes = dataset.__getitem__(i)
- a = draw_box(out_img.copy(), out_bboxes.astype(np.int32))
- plt.imshow(a.astype(np.int32))
- plt.show()
|