123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import torch
- import torch.nn as nn
- from .checks import check_version
- from .metrics import bbox_iou, probiou, wasserstein_loss
- from .ops import xywhr2xyxyxyxy
- TORCH_1_10 = check_version(torch.__version__, "1.10.0")
- class TaskAlignedAssigner(nn.Module):
- """
- A task-aligned assigner for object detection.
- This class assigns ground-truth (gt) objects to anchors based on the task-aligned metric, which combines both
- classification and localization information.
- Attributes:
- topk (int): The number of top candidates to consider.
- num_classes (int): The number of object classes.
- alpha (float): The alpha parameter for the classification component of the task-aligned metric.
- beta (float): The beta parameter for the localization component of the task-aligned metric.
- eps (float): A small value to prevent division by zero.
- """
- def __init__(self, topk=13, num_classes=80, alpha=1.0, beta=6.0, eps=1e-9):
- """Initialize a TaskAlignedAssigner object with customizable hyperparameters."""
- super().__init__()
- self.topk = topk
- self.num_classes = num_classes
- self.bg_idx = num_classes
- self.alpha = alpha
- self.beta = beta
- self.eps = eps
- @torch.no_grad()
- def forward(self, pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt):
- """
- Compute the task-aligned assignment. Reference code is available at
- https://github.com/Nioolek/PPYOLOE_pytorch/blob/master/ppyoloe/assigner/tal_assigner.py.
- Args:
- pd_scores (Tensor): shape(bs, num_total_anchors, num_classes)
- pd_bboxes (Tensor): shape(bs, num_total_anchors, 4)
- anc_points (Tensor): shape(num_total_anchors, 2)
- gt_labels (Tensor): shape(bs, n_max_boxes, 1)
- gt_bboxes (Tensor): shape(bs, n_max_boxes, 4)
- mask_gt (Tensor): shape(bs, n_max_boxes, 1)
- Returns:
- target_labels (Tensor): shape(bs, num_total_anchors)
- target_bboxes (Tensor): shape(bs, num_total_anchors, 4)
- target_scores (Tensor): shape(bs, num_total_anchors, num_classes)
- fg_mask (Tensor): shape(bs, num_total_anchors)
- target_gt_idx (Tensor): shape(bs, num_total_anchors)
- """
- self.bs = pd_scores.shape[0]
- self.n_max_boxes = gt_bboxes.shape[1]
- if self.n_max_boxes == 0:
- device = gt_bboxes.device
- return (
- torch.full_like(pd_scores[..., 0], self.bg_idx).to(device),
- torch.zeros_like(pd_bboxes).to(device),
- torch.zeros_like(pd_scores).to(device),
- torch.zeros_like(pd_scores[..., 0]).to(device),
- torch.zeros_like(pd_scores[..., 0]).to(device),
- )
- mask_pos, align_metric, overlaps = self.get_pos_mask(
- pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt
- )
- target_gt_idx, fg_mask, mask_pos = self.select_highest_overlaps(mask_pos, overlaps, self.n_max_boxes)
- # Assigned target
- target_labels, target_bboxes, target_scores = self.get_targets(gt_labels, gt_bboxes, target_gt_idx, fg_mask)
- # Normalize
- align_metric *= mask_pos
- pos_align_metrics = align_metric.amax(dim=-1, keepdim=True) # b, max_num_obj
- pos_overlaps = (overlaps * mask_pos).amax(dim=-1, keepdim=True) # b, max_num_obj
- norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1)
- target_scores = target_scores * norm_align_metric
- return target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idx
- def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt):
- """Get in_gts mask, (b, max_num_obj, h*w)."""
- mask_in_gts = self.select_candidates_in_gts(anc_points, gt_bboxes)
- # Get anchor_align metric, (b, max_num_obj, h*w)
- align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts * mask_gt)
- # Get topk_metric mask, (b, max_num_obj, h*w)
- mask_topk = self.select_topk_candidates(align_metric, topk_mask=mask_gt.expand(-1, -1, self.topk).bool())
- # Merge all mask to a final mask, (b, max_num_obj, h*w)
- mask_pos = mask_topk * mask_in_gts * mask_gt
- return mask_pos, align_metric, overlaps
- def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_gt):
- """Compute alignment metric given predicted and ground truth bounding boxes."""
- na = pd_bboxes.shape[-2]
- mask_gt = mask_gt.bool() # b, max_num_obj, h*w
- overlaps = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_bboxes.dtype, device=pd_bboxes.device)
- bbox_scores = torch.zeros([self.bs, self.n_max_boxes, na], dtype=pd_scores.dtype, device=pd_scores.device)
- ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long) # 2, b, max_num_obj
- ind[0] = torch.arange(end=self.bs).view(-1, 1).expand(-1, self.n_max_boxes) # b, max_num_obj
- ind[1] = gt_labels.squeeze(-1) # b, max_num_obj
- # Get the scores of each grid for each gt cls
- bbox_scores[mask_gt] = pd_scores[ind[0], :, ind[1]][mask_gt] # b, max_num_obj, h*w
- # (b, max_num_obj, 1, 4), (b, 1, h*w, 4)
- pd_boxes = pd_bboxes.unsqueeze(1).expand(-1, self.n_max_boxes, -1, -1)[mask_gt]
- gt_boxes = gt_bboxes.unsqueeze(2).expand(-1, -1, na, -1)[mask_gt]
- overlaps[mask_gt] = self.iou_calculation(gt_boxes, pd_boxes)
- align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta)
- return align_metric, overlaps
- def iou_calculation(self, gt_bboxes, pd_bboxes):
- """Iou calculation for horizontal bounding boxes."""
- return bbox_iou(gt_bboxes, pd_bboxes, xywh=False, CIoU=True).squeeze(-1).clamp_(0)
- # return wasserstein_loss(gt_bboxes, pd_bboxes).squeeze(-1).clamp_(0)
- def select_topk_candidates(self, metrics, largest=True, topk_mask=None):
- """
- Select the top-k candidates based on the given metrics.
- Args:
- metrics (Tensor): A tensor of shape (b, max_num_obj, h*w), where b is the batch size,
- max_num_obj is the maximum number of objects, and h*w represents the
- total number of anchor points.
- largest (bool): If True, select the largest values; otherwise, select the smallest values.
- topk_mask (Tensor): An optional boolean tensor of shape (b, max_num_obj, topk), where
- topk is the number of top candidates to consider. If not provided,
- the top-k values are automatically computed based on the given metrics.
- Returns:
- (Tensor): A tensor of shape (b, max_num_obj, h*w) containing the selected top-k candidates.
- """
- # (b, max_num_obj, topk)
- topk_metrics, topk_idxs = torch.topk(metrics, self.topk, dim=-1, largest=largest)
- if topk_mask is None:
- topk_mask = (topk_metrics.max(-1, keepdim=True)[0] > self.eps).expand_as(topk_idxs)
- # (b, max_num_obj, topk)
- topk_idxs.masked_fill_(~topk_mask, 0)
- # (b, max_num_obj, topk, h*w) -> (b, max_num_obj, h*w)
- count_tensor = torch.zeros(metrics.shape, dtype=torch.int8, device=topk_idxs.device)
- ones = torch.ones_like(topk_idxs[:, :, :1], dtype=torch.int8, device=topk_idxs.device)
- for k in range(self.topk):
- # Expand topk_idxs for each value of k and add 1 at the specified positions
- count_tensor.scatter_add_(-1, topk_idxs[:, :, k : k + 1], ones)
- # count_tensor.scatter_add_(-1, topk_idxs, torch.ones_like(topk_idxs, dtype=torch.int8, device=topk_idxs.device))
- # Filter invalid bboxes
- count_tensor.masked_fill_(count_tensor > 1, 0)
- return count_tensor.to(metrics.dtype)
- def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask):
- """
- Compute target labels, target bounding boxes, and target scores for the positive anchor points.
- Args:
- gt_labels (Tensor): Ground truth labels of shape (b, max_num_obj, 1), where b is the
- batch size and max_num_obj is the maximum number of objects.
- gt_bboxes (Tensor): Ground truth bounding boxes of shape (b, max_num_obj, 4).
- target_gt_idx (Tensor): Indices of the assigned ground truth objects for positive
- anchor points, with shape (b, h*w), where h*w is the total
- number of anchor points.
- fg_mask (Tensor): A boolean tensor of shape (b, h*w) indicating the positive
- (foreground) anchor points.
- Returns:
- (Tuple[Tensor, Tensor, Tensor]): A tuple containing the following tensors:
- - target_labels (Tensor): Shape (b, h*w), containing the target labels for
- positive anchor points.
- - target_bboxes (Tensor): Shape (b, h*w, 4), containing the target bounding boxes
- for positive anchor points.
- - target_scores (Tensor): Shape (b, h*w, num_classes), containing the target scores
- for positive anchor points, where num_classes is the number
- of object classes.
- """
- # Assigned target labels, (b, 1)
- batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None]
- target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes # (b, h*w)
- target_labels = gt_labels.long().flatten()[target_gt_idx] # (b, h*w)
- # Assigned target boxes, (b, max_num_obj, 4) -> (b, h*w, 4)
- target_bboxes = gt_bboxes.view(-1, gt_bboxes.shape[-1])[target_gt_idx]
- # Assigned target scores
- target_labels.clamp_(0)
- # 10x faster than F.one_hot()
- target_scores = torch.zeros(
- (target_labels.shape[0], target_labels.shape[1], self.num_classes),
- dtype=torch.int64,
- device=target_labels.device,
- ) # (b, h*w, 80)
- target_scores.scatter_(2, target_labels.unsqueeze(-1), 1)
- fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes) # (b, h*w, 80)
- target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)
- return target_labels, target_bboxes, target_scores
- @staticmethod
- def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9):
- """
- Select the positive anchor center in gt.
- Args:
- xy_centers (Tensor): shape(h*w, 2)
- gt_bboxes (Tensor): shape(b, n_boxes, 4)
- Returns:
- (Tensor): shape(b, n_boxes, h*w)
- """
- n_anchors = xy_centers.shape[0]
- bs, n_boxes, _ = gt_bboxes.shape
- lt, rb = gt_bboxes.view(-1, 1, 4).chunk(2, 2) # left-top, right-bottom
- bbox_deltas = torch.cat((xy_centers[None] - lt, rb - xy_centers[None]), dim=2).view(bs, n_boxes, n_anchors, -1)
- # return (bbox_deltas.min(3)[0] > eps).to(gt_bboxes.dtype)
- return bbox_deltas.amin(3).gt_(eps)
- @staticmethod
- def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):
- """
- If an anchor box is assigned to multiple gts, the one with the highest IoU will be selected.
- Args:
- mask_pos (Tensor): shape(b, n_max_boxes, h*w)
- overlaps (Tensor): shape(b, n_max_boxes, h*w)
- Returns:
- target_gt_idx (Tensor): shape(b, h*w)
- fg_mask (Tensor): shape(b, h*w)
- mask_pos (Tensor): shape(b, n_max_boxes, h*w)
- """
- # (b, n_max_boxes, h*w) -> (b, h*w)
- fg_mask = mask_pos.sum(-2)
- if fg_mask.max() > 1: # one anchor is assigned to multiple gt_bboxes
- mask_multi_gts = (fg_mask.unsqueeze(1) > 1).expand(-1, n_max_boxes, -1) # (b, n_max_boxes, h*w)
- max_overlaps_idx = overlaps.argmax(1) # (b, h*w)
- is_max_overlaps = torch.zeros(mask_pos.shape, dtype=mask_pos.dtype, device=mask_pos.device)
- is_max_overlaps.scatter_(1, max_overlaps_idx.unsqueeze(1), 1)
- mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos).float() # (b, n_max_boxes, h*w)
- fg_mask = mask_pos.sum(-2)
- # Find each grid serve which gt(index)
- target_gt_idx = mask_pos.argmax(-2) # (b, h*w)
- return target_gt_idx, fg_mask, mask_pos
- class RotatedTaskAlignedAssigner(TaskAlignedAssigner):
- def iou_calculation(self, gt_bboxes, pd_bboxes):
- """IoU calculation for rotated bounding boxes."""
- return probiou(gt_bboxes, pd_bboxes).squeeze(-1).clamp_(0)
- @staticmethod
- def select_candidates_in_gts(xy_centers, gt_bboxes):
- """
- Select the positive anchor center in gt for rotated bounding boxes.
- Args:
- xy_centers (Tensor): shape(h*w, 2)
- gt_bboxes (Tensor): shape(b, n_boxes, 5)
- Returns:
- (Tensor): shape(b, n_boxes, h*w)
- """
- # (b, n_boxes, 5) --> (b, n_boxes, 4, 2)
- corners = xywhr2xyxyxyxy(gt_bboxes)
- # (b, n_boxes, 1, 2)
- a, b, _, d = corners.split(1, dim=-2)
- ab = b - a
- ad = d - a
- # (b, n_boxes, h*w, 2)
- ap = xy_centers - a
- norm_ab = (ab * ab).sum(dim=-1)
- norm_ad = (ad * ad).sum(dim=-1)
- ap_dot_ab = (ap * ab).sum(dim=-1)
- ap_dot_ad = (ap * ad).sum(dim=-1)
- return (ap_dot_ab >= 0) & (ap_dot_ab <= norm_ab) & (ap_dot_ad >= 0) & (ap_dot_ad <= norm_ad) # is_in_box
- def make_anchors(feats, strides, grid_cell_offset=0.5):
- """Generate anchors from features."""
- anchor_points, stride_tensor = [], []
- assert feats is not None
- dtype, device = feats[0].dtype, feats[0].device
- for i, stride in enumerate(strides):
- _, _, h, w = feats[i].shape
- sx = torch.arange(end=w, device=device, dtype=dtype) + grid_cell_offset # shift x
- sy = torch.arange(end=h, device=device, dtype=dtype) + grid_cell_offset # shift y
- sy, sx = torch.meshgrid(sy, sx, indexing="ij") if TORCH_1_10 else torch.meshgrid(sy, sx)
- anchor_points.append(torch.stack((sx, sy), -1).view(-1, 2))
- stride_tensor.append(torch.full((h * w, 1), stride, dtype=dtype, device=device))
- return torch.cat(anchor_points), torch.cat(stride_tensor)
- def dist2bbox(distance, anchor_points, xywh=True, dim=-1):
- """Transform distance(ltrb) to box(xywh or xyxy)."""
- lt, rb = distance.chunk(2, dim)
- x1y1 = anchor_points - lt
- x2y2 = anchor_points + rb
- if xywh:
- c_xy = (x1y1 + x2y2) / 2
- wh = x2y2 - x1y1
- return torch.cat((c_xy, wh), dim) # xywh bbox
- return torch.cat((x1y1, x2y2), dim) # xyxy bbox
- def bbox2dist(anchor_points, bbox, reg_max):
- """Transform bbox(xyxy) to dist(ltrb)."""
- x1y1, x2y2 = bbox.chunk(2, -1)
- return torch.cat((anchor_points - x1y1, x2y2 - anchor_points), -1).clamp_(0, reg_max - 0.01) # dist (lt, rb)
- def dist2rbox(pred_dist, pred_angle, anchor_points, dim=-1):
- """
- Decode predicted object bounding box coordinates from anchor points and distribution.
- Args:
- pred_dist (torch.Tensor): Predicted rotated distance, (bs, h*w, 4).
- pred_angle (torch.Tensor): Predicted angle, (bs, h*w, 1).
- anchor_points (torch.Tensor): Anchor points, (h*w, 2).
- Returns:
- (torch.Tensor): Predicted rotated bounding boxes, (bs, h*w, 4).
- """
- lt, rb = pred_dist.split(2, dim=dim)
- cos, sin = torch.cos(pred_angle), torch.sin(pred_angle)
- # (bs, h*w, 1)
- xf, yf = ((rb - lt) / 2).split(1, dim=dim)
- x, y = xf * cos - yf * sin, xf * sin + yf * cos
- xy = torch.cat([x, y], dim=dim) + anchor_points
- return torch.cat([xy, lt + rb], dim=dim)
|