12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- """Monkey patches to update/extend functionality of existing functions."""
- import time
- from pathlib import Path
- import cv2
- import numpy as np
- import torch
- # OpenCV Multilanguage-friendly functions ------------------------------------------------------------------------------
- _imshow = cv2.imshow # copy to avoid recursion errors
- def imread(filename: str, flags: int = cv2.IMREAD_COLOR):
- """
- Read an image from a file.
- Args:
- filename (str): Path to the file to read.
- flags (int, optional): Flag that can take values of cv2.IMREAD_*. Defaults to cv2.IMREAD_COLOR.
- Returns:
- (np.ndarray): The read image.
- """
- return cv2.imdecode(np.fromfile(filename, np.uint8), flags)
- def imwrite(filename: str, img: np.ndarray, params=None):
- """
- Write an image to a file.
- Args:
- filename (str): Path to the file to write.
- img (np.ndarray): Image to write.
- params (list of ints, optional): Additional parameters. See OpenCV documentation.
- Returns:
- (bool): True if the file was written, False otherwise.
- """
- try:
- cv2.imencode(Path(filename).suffix, img, params)[1].tofile(filename)
- return True
- except Exception:
- return False
- def imshow(winname: str, mat: np.ndarray):
- """
- Displays an image in the specified window.
- Args:
- winname (str): Name of the window.
- mat (np.ndarray): Image to be shown.
- """
- _imshow(winname.encode("unicode_escape").decode(), mat)
- # PyTorch functions ----------------------------------------------------------------------------------------------------
- _torch_save = torch.save # copy to avoid recursion errors
- def torch_save(*args, use_dill=True, **kwargs):
- """
- Optionally use dill to serialize lambda functions where pickle does not, adding robustness with 3 retries and
- exponential standoff in case of save failure.
- Args:
- *args (tuple): Positional arguments to pass to torch.save.
- use_dill (bool): Whether to try using dill for serialization if available. Defaults to True.
- **kwargs (any): Keyword arguments to pass to torch.save.
- """
- try:
- assert use_dill
- import dill as pickle
- except (AssertionError, ImportError):
- import pickle
- if "pickle_module" not in kwargs:
- kwargs["pickle_module"] = pickle
- for i in range(4): # 3 retries
- try:
- return _torch_save(*args, **kwargs)
- except RuntimeError as e: # unable to save, possibly waiting for device to flush or antivirus scan
- if i == 3:
- raise e
- time.sleep((2**i) / 2) # exponential standoff: 0.5s, 1.0s, 2.0s
|