123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from ultralytics.utils.metrics import OKS_SIGMA
- from ultralytics.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh
- from ultralytics.utils.tal import RotatedTaskAlignedAssigner, TaskAlignedAssigner, dist2bbox, dist2rbox, make_anchors
- from ultralytics.utils.atss import ATSSAssigner, generate_anchors
- from .metrics import bbox_iou, probiou, bbox_mpdiou, bbox_inner_iou, bbox_focaler_iou, bbox_inner_mpdiou, bbox_focaler_mpdiou, wasserstein_loss, WiseIouLoss
- from .tal import bbox2dist
- import math
- class SlideLoss(nn.Module):
- def __init__(self, loss_fcn):
- super(SlideLoss, self).__init__()
- self.loss_fcn = loss_fcn
- self.reduction = loss_fcn.reduction
- self.loss_fcn.reduction = 'none' # required to apply SL to each element
- def forward(self, pred, true, auto_iou=0.5):
- loss = self.loss_fcn(pred, true)
- if auto_iou < 0.2:
- auto_iou = 0.2
- b1 = true <= auto_iou - 0.1
- a1 = 1.0
- b2 = (true > (auto_iou - 0.1)) & (true < auto_iou)
- a2 = math.exp(1.0 - auto_iou)
- b3 = true >= auto_iou
- a3 = torch.exp(-(true - 1.0))
- modulating_weight = a1 * b1 + a2 * b2 + a3 * b3
- loss *= modulating_weight
- if self.reduction == 'mean':
- return loss.mean()
- elif self.reduction == 'sum':
- return loss.sum()
- else: # 'none'
- return loss
- class EMASlideLoss:
- def __init__(self, loss_fcn, decay=0.999, tau=2000):
- super(EMASlideLoss, self).__init__()
- self.loss_fcn = loss_fcn
- self.reduction = loss_fcn.reduction
- self.loss_fcn.reduction = 'none' # required to apply SL to each element
- self.decay = lambda x: decay * (1 - math.exp(-x / tau))
- self.is_train = True
- self.updates = 0
- self.iou_mean = 1.0
-
- def __call__(self, pred, true, auto_iou=0.5):
- if self.is_train and auto_iou != -1:
- self.updates += 1
- d = self.decay(self.updates)
- self.iou_mean = d * self.iou_mean + (1 - d) * float(auto_iou.detach())
- auto_iou = self.iou_mean
- loss = self.loss_fcn(pred, true)
- if auto_iou < 0.2:
- auto_iou = 0.2
- b1 = true <= auto_iou - 0.1
- a1 = 1.0
- b2 = (true > (auto_iou - 0.1)) & (true < auto_iou)
- a2 = math.exp(1.0 - auto_iou)
- b3 = true >= auto_iou
- a3 = torch.exp(-(true - 1.0))
- modulating_weight = a1 * b1 + a2 * b2 + a3 * b3
- loss *= modulating_weight
- if self.reduction == 'mean':
- return loss.mean()
- elif self.reduction == 'sum':
- return loss.sum()
- else: # 'none'
- return loss
- class VarifocalLoss(nn.Module):
- """
- Varifocal loss by Zhang et al.
- https://arxiv.org/abs/2008.13367.
- """
- def __init__(self):
- """Initialize the VarifocalLoss class."""
- super().__init__()
- @staticmethod
- def forward(pred_score, gt_score, label, alpha=0.75, gamma=2.0):
- """Computes varfocal loss."""
- weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
- with torch.cuda.amp.autocast(enabled=False):
- loss = (
- (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(), reduction="none") * weight)
- .mean(1)
- .sum()
- )
- return loss
- class FocalLoss(nn.Module):
- """Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)."""
- def __init__(self):
- """Initializer for FocalLoss class with no parameters."""
- super().__init__()
- @staticmethod
- def forward(pred, label, gamma=1.5, alpha=0.25):
- """Calculates and updates confusion matrix for object detection/classification tasks."""
- loss = F.binary_cross_entropy_with_logits(pred, label, reduction="none")
- # p_t = torch.exp(-loss)
- # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
- # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
- pred_prob = pred.sigmoid() # prob from logits
- p_t = label * pred_prob + (1 - label) * (1 - pred_prob)
- modulating_factor = (1.0 - p_t) ** gamma
- loss *= modulating_factor
- if alpha > 0:
- alpha_factor = label * alpha + (1 - label) * (1 - alpha)
- loss *= alpha_factor
- return loss.mean(1).sum()
- class VarifocalLoss_YOLO(nn.Module):
- """
- Varifocal loss by Zhang et al.
- https://arxiv.org/abs/2008.13367.
- """
- def __init__(self, alpha=0.75, gamma=2.0):
- """Initialize the VarifocalLoss class."""
- super().__init__()
- self.alpha = alpha
- self.gamma = gamma
- def forward(self, pred_score, gt_score):
- """Computes varfocal loss."""
-
- weight = self.alpha * (pred_score.sigmoid() - gt_score).abs().pow(self.gamma) * (gt_score <= 0.0).float() + gt_score * (gt_score > 0.0).float()
- with torch.cuda.amp.autocast(enabled=False):
- return F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(), reduction='none') * weight
- class QualityfocalLoss_YOLO(nn.Module):
- def __init__(self, beta=2.0):
- super().__init__()
- self.beta = beta
-
- def forward(self, pred_score, gt_score, gt_target_pos_mask):
- # negatives are supervised by 0 quality score
- pred_sigmoid = pred_score.sigmoid()
- scale_factor = pred_sigmoid
- zerolabel = scale_factor.new_zeros(pred_score.shape)
- with torch.cuda.amp.autocast(enabled=False):
- loss = F.binary_cross_entropy_with_logits(pred_score, zerolabel, reduction='none') * scale_factor.pow(self.beta)
-
- scale_factor = gt_score[gt_target_pos_mask] - pred_sigmoid[gt_target_pos_mask]
- with torch.cuda.amp.autocast(enabled=False):
- loss[gt_target_pos_mask] = F.binary_cross_entropy_with_logits(pred_score[gt_target_pos_mask], gt_score[gt_target_pos_mask], reduction='none') * scale_factor.abs().pow(self.beta)
- return loss
- class FocalLoss_YOLO(nn.Module):
- """Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)."""
- def __init__(self, gamma=1.5, alpha=0.25):
- """Initializer for FocalLoss class with no parameters."""
- super().__init__()
- self.gamma = gamma
- self.alpha = alpha
- def forward(self, pred, label):
- """Calculates and updates confusion matrix for object detection/classification tasks."""
- loss = F.binary_cross_entropy_with_logits(pred, label, reduction='none')
- # p_t = torch.exp(-loss)
- # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
- # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
- pred_prob = pred.sigmoid() # prob from logits
- p_t = label * pred_prob + (1 - label) * (1 - pred_prob)
- modulating_factor = (1.0 - p_t) ** self.gamma
- loss *= modulating_factor
- if self.alpha > 0:
- alpha_factor = label * self.alpha + (1 - label) * (1 - self.alpha)
- loss *= alpha_factor
- return loss
- class DFLoss(nn.Module):
- """Criterion class for computing DFL losses during training."""
- def __init__(self, reg_max=16) -> None:
- """Initialize the DFL module."""
- super().__init__()
- self.reg_max = reg_max
- def __call__(self, pred_dist, target):
- """
- Return sum of left and right DFL losses.
- Distribution Focal Loss (DFL) proposed in Generalized Focal Loss
- https://ieeexplore.ieee.org/document/9792391
- """
- target = target.clamp_(0, self.reg_max - 1 - 0.01)
- tl = target.long() # target left
- tr = tl + 1 # target right
- wl = tr - target # weight left
- wr = 1 - wl # weight right
- return (
- F.cross_entropy(pred_dist, tl.view(-1), reduction="none").view(tl.shape) * wl
- + F.cross_entropy(pred_dist, tr.view(-1), reduction="none").view(tl.shape) * wr
- ).mean(-1, keepdim=True)
- class BboxLoss(nn.Module):
- """Criterion class for computing training losses during training."""
- def __init__(self, reg_max=16):
- """Initialize the BboxLoss module with regularization maximum and DFL settings."""
- super().__init__()
- self.dfl_loss = DFLoss(reg_max) if reg_max > 1 else None
-
- # NWD
- self.nwd_loss = False
- self.iou_ratio = 0.5 # total_iou_loss = self.iou_ratio * iou_loss + (1 - self.iou_ratio) * nwd_loss
-
- # WiseIOU
- self.use_wiseiou = False
- if self.use_wiseiou:
- self.wiou_loss = WiseIouLoss(ltype='WIoU', monotonous=False, inner_iou=False, focaler_iou=False)
- def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask, mpdiou_hw=None):
- """IoU loss."""
- weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)
- if self.use_wiseiou:
- wiou = self.wiou_loss(pred_bboxes[fg_mask], target_bboxes[fg_mask], ret_iou=False, ratio=0.7, d=0.0, u=0.95).unsqueeze(-1)
- # wiou = self.wiou_loss(pred_bboxes[fg_mask], target_bboxes[fg_mask], ret_iou=False, ratio=0.7, d=0.0, u=0.95, **{'scale':0.0}).unsqueeze(-1) # Wise-ShapeIoU,Wise-Inner-ShapeIoU,Wise-Focaler-ShapeIoU
- # wiou = self.wiou_loss(pred_bboxes[fg_mask], target_bboxes[fg_mask], ret_iou=False, ratio=0.7, d=0.0, u=0.95, **{'mpdiou_hw':mpdiou_hw[fg_mask]}).unsqueeze(-1) # Wise-MPDIoU,Wise-Inner-MPDIoU,Wise-Focaler-MPDIoU
- loss_iou = (wiou * weight).sum() / target_scores_sum
- else:
- iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True)
- # iou = bbox_inner_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True, ratio=0.7)
- # iou = bbox_mpdiou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, mpdiou_hw=mpdiou_hw[fg_mask])
- # iou = bbox_inner_mpdiou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, mpdiou_hw=mpdiou_hw[fg_mask], ratio=0.7)
- # iou = bbox_focaler_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True, d=0.0, u=0.95)
- # iou = bbox_focaler_mpdiou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, mpdiou_hw=mpdiou_hw[fg_mask], d=0.0, u=0.95)
- loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum
-
- if self.nwd_loss:
- nwd = wasserstein_loss(pred_bboxes[fg_mask], target_bboxes[fg_mask])
- nwd_loss = ((1.0 - nwd) * weight).sum() / target_scores_sum
- loss_iou = self.iou_ratio * loss_iou + (1 - self.iou_ratio) * nwd_loss
- # DFL loss
- if self.dfl_loss:
- target_ltrb = bbox2dist(anchor_points, target_bboxes, self.dfl_loss.reg_max - 1)
- loss_dfl = self.dfl_loss(pred_dist[fg_mask].view(-1, self.dfl_loss.reg_max), target_ltrb[fg_mask]) * weight
- loss_dfl = loss_dfl.sum() / target_scores_sum
- else:
- loss_dfl = torch.tensor(0.0).to(pred_dist.device)
- return loss_iou, loss_dfl
- class RotatedBboxLoss(BboxLoss):
- """Criterion class for computing training losses during training."""
- def __init__(self, reg_max):
- """Initialize the BboxLoss module with regularization maximum and DFL settings."""
- super().__init__(reg_max)
- def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
- """IoU loss."""
- weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)
- iou = probiou(pred_bboxes[fg_mask], target_bboxes[fg_mask])
- loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum
- # DFL loss
- if self.dfl_loss:
- target_ltrb = bbox2dist(anchor_points, xywh2xyxy(target_bboxes[..., :4]), self.dfl_loss.reg_max - 1)
- loss_dfl = self.dfl_loss(pred_dist[fg_mask].view(-1, self.dfl_loss.reg_max), target_ltrb[fg_mask]) * weight
- loss_dfl = loss_dfl.sum() / target_scores_sum
- else:
- loss_dfl = torch.tensor(0.0).to(pred_dist.device)
- return loss_iou, loss_dfl
- class KeypointLoss(nn.Module):
- """Criterion class for computing training losses."""
- def __init__(self, sigmas) -> None:
- """Initialize the KeypointLoss class."""
- super().__init__()
- self.sigmas = sigmas
- def forward(self, pred_kpts, gt_kpts, kpt_mask, area):
- """Calculates keypoint loss factor and Euclidean distance loss for predicted and actual keypoints."""
- d = (pred_kpts[..., 0] - gt_kpts[..., 0]).pow(2) + (pred_kpts[..., 1] - gt_kpts[..., 1]).pow(2)
- kpt_loss_factor = kpt_mask.shape[1] / (torch.sum(kpt_mask != 0, dim=1) + 1e-9)
- # e = d / (2 * (area * self.sigmas) ** 2 + 1e-9) # from formula
- e = d / ((2 * self.sigmas).pow(2) * (area + 1e-9) * 2) # from cocoeval
- return (kpt_loss_factor.view(-1, 1) * ((1 - torch.exp(-e)) * kpt_mask)).mean()
- class v8DetectionLoss:
- """Criterion class for computing training losses."""
- def __init__(self, model, tal_topk=10): # model must be de-paralleled
- """Initializes v8DetectionLoss with the model, defining model-related properties and BCE loss function."""
- device = next(model.parameters()).device # get model device
- h = model.args # hyperparameters
- m = model.model[-1] # Detect() module
- self.bce = nn.BCEWithLogitsLoss(reduction="none")
- # self.bce = EMASlideLoss(nn.BCEWithLogitsLoss(reduction='none')) # Exponential Moving Average Slide Loss
- # self.bce = SlideLoss(nn.BCEWithLogitsLoss(reduction='none')) # Slide Loss
- # self.bce = FocalLoss_YOLO(alpha=0.25, gamma=1.5) # FocalLoss
- # self.bce = VarifocalLoss_YOLO(alpha=0.75, gamma=2.0) # VarifocalLoss
- # self.bce = QualityfocalLoss_YOLO(beta=2.0) # QualityfocalLoss
- self.hyp = h
- self.stride = m.stride # model strides
- self.nc = m.nc # number of classes
- self.no = m.nc + m.reg_max * 4
- self.reg_max = m.reg_max
- self.device = device
- self.use_dfl = m.reg_max > 1
- self.assigner = TaskAlignedAssigner(topk=tal_topk, num_classes=self.nc, alpha=0.5, beta=6.0)
- if hasattr(m, 'dfl_aux'):
- self.assigner_aux = TaskAlignedAssigner(topk=13, num_classes=self.nc, alpha=0.5, beta=6.0)
- self.aux_loss_ratio = 0.25
- # self.assigner = ATSSAssigner(9, num_classes=self.nc)
- self.bbox_loss = BboxLoss(m.reg_max).to(device)
- self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device)
-
- # ATSS use
- self.grid_cell_offset = 0.5
- self.fpn_strides = list(self.stride.detach().cpu().numpy())
- self.grid_cell_size = 5.0
- def preprocess(self, targets, batch_size, scale_tensor):
- """Preprocesses the target counts and matches with the input batch size to output a tensor."""
- nl, ne = targets.shape
- if nl == 0:
- out = torch.zeros(batch_size, 0, ne - 1, device=self.device)
- else:
- i = targets[:, 0] # image index
- _, counts = i.unique(return_counts=True)
- counts = counts.to(dtype=torch.int32)
- out = torch.zeros(batch_size, counts.max(), ne - 1, device=self.device)
- for j in range(batch_size):
- matches = i == j
- n = matches.sum()
- if n:
- out[j, :n] = targets[matches, 1:]
- out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
- return out
- def bbox_decode(self, anchor_points, pred_dist):
- """Decode predicted object bounding box coordinates from anchor points and distribution."""
- if self.use_dfl:
- b, a, c = pred_dist.shape # batch, anchors, channels
- pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
- # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
- # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
- return dist2bbox(pred_dist, anchor_points, xywh=False)
- def __call__(self, preds, batch):
- if hasattr(self, 'assigner_aux'):
- loss, batch_size = self.compute_loss_aux(preds, batch)
- else:
- loss, batch_size = self.compute_loss(preds, batch)
- return loss.sum() * batch_size, loss.detach()
- def compute_loss(self, preds, batch):
- """Calculate the sum of the loss for box, cls and dfl multiplied by batch size."""
- loss = torch.zeros(3, device=self.device) # box, cls, dfl
- feats = preds[1] if isinstance(preds, tuple) else preds
- feats = feats[:self.stride.size(0)]
- pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
- (self.reg_max * 4, self.nc), 1)
- pred_scores = pred_scores.permute(0, 2, 1).contiguous()
- pred_distri = pred_distri.permute(0, 2, 1).contiguous()
- dtype = pred_scores.dtype
- batch_size = pred_scores.shape[0]
- imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
- anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
- # targets
- targets = torch.cat((batch['batch_idx'].view(-1, 1), batch['cls'].view(-1, 1), batch['bboxes']), 1)
- targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
- gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
- mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
- # pboxes
- pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
- # ATSS
- if isinstance(self.assigner, ATSSAssigner):
- anchors, _, n_anchors_list, _ = \
- generate_anchors(feats, self.fpn_strides, self.grid_cell_size, self.grid_cell_offset, device=feats[0].device)
- target_labels, target_bboxes, target_scores, fg_mask, _ = self.assigner(anchors, n_anchors_list, gt_labels, gt_bboxes, mask_gt, pred_bboxes.detach() * stride_tensor)
- # TAL
- else:
- target_labels, target_bboxes, target_scores, fg_mask, _ = self.assigner(
- pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
- anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
- target_scores_sum = max(target_scores.sum(), 1)
- # cls loss
- if isinstance(self.bce, (nn.BCEWithLogitsLoss, FocalLoss_YOLO)):
- loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
- elif isinstance(self.bce, VarifocalLoss_YOLO):
- if fg_mask.sum():
- pos_ious = bbox_iou(pred_bboxes, target_bboxes / stride_tensor, xywh=False).clamp(min=1e-6).detach()
- # 10.0x Faster than torch.one_hot
- cls_iou_targets = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
- dtype=torch.int64,
- device=target_labels.device) # (b, h*w, 80)
- cls_iou_targets.scatter_(2, target_labels.unsqueeze(-1), 1)
- cls_iou_targets = pos_ious * cls_iou_targets
- fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.nc) # (b, h*w, 80)
- cls_iou_targets = torch.where(fg_scores_mask > 0, cls_iou_targets, 0)
- else:
- cls_iou_targets = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
- dtype=torch.int64,
- device=target_labels.device) # (b, h*w, 80)
- loss[1] = self.bce(pred_scores, cls_iou_targets.to(dtype)).sum() / max(fg_mask.sum(), 1) # BCE
- elif isinstance(self.bce, QualityfocalLoss_YOLO):
- if fg_mask.sum():
- pos_ious = bbox_iou(pred_bboxes, target_bboxes / stride_tensor, xywh=False).clamp(min=1e-6).detach()
- # 10.0x Faster than torch.one_hot
- targets_onehot = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
- dtype=torch.int64,
- device=target_labels.device) # (b, h*w, 80)
- targets_onehot.scatter_(2, target_labels.unsqueeze(-1), 1)
- cls_iou_targets = pos_ious * targets_onehot
- fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.nc) # (b, h*w, 80)
- targets_onehot_pos = torch.where(fg_scores_mask > 0, targets_onehot, 0)
- cls_iou_targets = torch.where(fg_scores_mask > 0, cls_iou_targets, 0)
- else:
- cls_iou_targets = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
- dtype=torch.int64,
- device=target_labels.device) # (b, h*w, 80)
- targets_onehot_pos = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
- dtype=torch.int64,
- device=target_labels.device) # (b, h*w, 80)
- loss[1] = self.bce(pred_scores, cls_iou_targets.to(dtype), targets_onehot_pos.to(torch.bool)).sum() / max(fg_mask.sum(), 1)
- # bbox loss
- if fg_mask.sum():
- target_bboxes /= stride_tensor
- loss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
- target_scores_sum, fg_mask, ((imgsz[0] ** 2 + imgsz[1] ** 2) / torch.square(stride_tensor)).repeat(1, batch_size).transpose(1, 0))
- if isinstance(self.bce, (EMASlideLoss, SlideLoss)):
- if fg_mask.sum():
- auto_iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True).mean()
- else:
- auto_iou = -1
- loss[1] = self.bce(pred_scores, target_scores.to(dtype), auto_iou).sum() / target_scores_sum # BCE
-
- loss[0] *= self.hyp.box # box gain
- loss[1] *= self.hyp.cls # cls gain
- loss[2] *= self.hyp.dfl # dfl gain
- return loss, batch_size
-
- def compute_loss_aux(self, preds, batch):
- """Calculate the sum of the loss for box, cls and dfl multiplied by batch size."""
- loss = torch.zeros(3, device=self.device) # box, cls, dfl
- feats_all = preds[1] if isinstance(preds, tuple) else preds
- if len(feats_all) == self.stride.size(0):
- return self.compute_loss(preds, batch)
- feats, feats_aux = feats_all[:self.stride.size(0)], feats_all[self.stride.size(0):]
-
- pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split((self.reg_max * 4, self.nc), 1)
- pred_distri_aux, pred_scores_aux = torch.cat([xi.view(feats_aux[0].shape[0], self.no, -1) for xi in feats_aux], 2).split((self.reg_max * 4, self.nc), 1)
- pred_scores, pred_distri = pred_scores.permute(0, 2, 1).contiguous(), pred_distri.permute(0, 2, 1).contiguous()
- pred_scores_aux, pred_distri_aux = pred_scores_aux.permute(0, 2, 1).contiguous(), pred_distri_aux.permute(0, 2, 1).contiguous()
- dtype = pred_scores.dtype
- batch_size = pred_scores.shape[0]
- imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
- anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
- # targets
- targets = torch.cat((batch['batch_idx'].view(-1, 1), batch['cls'].view(-1, 1), batch['bboxes']), 1)
- targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
- gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
- mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
- # pboxes
- pred_bboxes = self.bbox_decode(anchor_points, pred_distri)
- pred_bboxes_aux = self.bbox_decode(anchor_points, pred_distri_aux) # xyxy, (b, h*w, 4)
- target_labels, target_bboxes, target_scores, fg_mask, _ = self.assigner(pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
- anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
- target_labels_aux, target_bboxes_aux, target_scores_aux, fg_mask_aux, _ = self.assigner_aux(pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
- anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
- target_scores_sum = max(target_scores.sum(), 1)
- target_scores_sum_aux = max(target_scores_aux.sum(), 1)
- # cls loss
- if isinstance(self.bce, nn.BCEWithLogitsLoss):
- loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
- loss[1] += self.bce(pred_scores_aux, target_scores_aux.to(dtype)).sum() / target_scores_sum_aux * self.aux_loss_ratio # BCE
- # bbox loss
- if fg_mask.sum():
- target_bboxes /= stride_tensor
- target_bboxes_aux /= stride_tensor
- loss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
- target_scores_sum, fg_mask, ((imgsz[0] ** 2 + imgsz[1] ** 2) / torch.square(stride_tensor)).repeat(1, batch_size).transpose(1, 0))
- aux_loss_0, aux_loss_2 = self.bbox_loss(pred_distri_aux, pred_bboxes_aux, anchor_points, target_bboxes_aux, target_scores_aux,
- target_scores_sum_aux, fg_mask_aux, ((imgsz[0] ** 2 + imgsz[1] ** 2) / torch.square(stride_tensor)).repeat(1, batch_size).transpose(1, 0))
-
- loss[0] += aux_loss_0 * self.aux_loss_ratio
- loss[2] += aux_loss_2 * self.aux_loss_ratio
- if isinstance(self.bce, (EMASlideLoss, SlideLoss)):
- auto_iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True).mean()
- loss[1] = self.bce(pred_scores, target_scores.to(dtype), auto_iou).sum() / target_scores_sum # BCE
- loss[1] += self.bce(pred_scores_aux, target_scores_aux.to(dtype), -1).sum() / target_scores_sum_aux * self.aux_loss_ratio # BCE
-
- loss[0] *= self.hyp.box # box gain
- loss[1] *= self.hyp.cls # cls gain
- loss[2] *= self.hyp.dfl # dfl gain
- # return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
- return loss, batch_size
- class v8SegmentationLoss(v8DetectionLoss):
- """Criterion class for computing training losses."""
- def __init__(self, model): # model must be de-paralleled
- """Initializes the v8SegmentationLoss class, taking a de-paralleled model as argument."""
- super().__init__(model)
- self.overlap = model.args.overlap_mask
- def __call__(self, preds, batch):
- """Calculate and return the loss for the YOLO model."""
- loss = torch.zeros(4, device=self.device) # box, cls, dfl
- feats, pred_masks, proto = preds if len(preds) == 3 else preds[1]
- batch_size, _, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width
- pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
- (self.reg_max * 4, self.nc), 1
- )
- # B, grids, ..
- pred_scores = pred_scores.permute(0, 2, 1).contiguous()
- pred_distri = pred_distri.permute(0, 2, 1).contiguous()
- pred_masks = pred_masks.permute(0, 2, 1).contiguous()
- dtype = pred_scores.dtype
- imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
- anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
- # Targets
- try:
- batch_idx = batch["batch_idx"].view(-1, 1)
- targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"]), 1)
- targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
- gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
- mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0.0)
- except RuntimeError as e:
- raise TypeError(
- "ERROR ❌ segment dataset incorrectly formatted or not a segment dataset.\n"
- "This error can occur when incorrectly training a 'segment' model on a 'detect' dataset, "
- "i.e. 'yolo train model=yolov8n-seg.pt data=coco8.yaml'.\nVerify your dataset is a "
- "correctly formatted 'segment' dataset using 'data=coco8-seg.yaml' "
- "as an example.\nSee https://docs.ultralytics.com/datasets/segment/ for help."
- ) from e
- # Pboxes
- pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
- # ATSS
- if isinstance(self.assigner, ATSSAssigner):
- anchors, _, n_anchors_list, _ = \
- generate_anchors(feats, self.fpn_strides, self.grid_cell_size, self.grid_cell_offset, device=feats[0].device)
- target_labels, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(anchors, n_anchors_list, gt_labels, gt_bboxes, mask_gt, pred_bboxes.detach() * stride_tensor)
- else:
- target_labels, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
- pred_scores.detach().sigmoid(),
- (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
- anchor_points * stride_tensor,
- gt_labels,
- gt_bboxes,
- mask_gt,
- )
- target_scores_sum = max(target_scores.sum(), 1)
- # Cls loss
- if isinstance(self.bce, (nn.BCEWithLogitsLoss, FocalLoss_YOLO)):
- loss[2] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
- elif isinstance(self.bce, VarifocalLoss_YOLO):
- if fg_mask.sum():
- pos_ious = bbox_iou(pred_bboxes, target_bboxes / stride_tensor, xywh=False).clamp(min=1e-6).detach()
- # 10.0x Faster than torch.one_hot
- cls_iou_targets = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
- dtype=torch.int64,
- device=target_labels.device) # (b, h*w, 80)
- cls_iou_targets.scatter_(2, target_labels.unsqueeze(-1), 1)
- cls_iou_targets = pos_ious * cls_iou_targets
- fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.nc) # (b, h*w, 80)
- cls_iou_targets = torch.where(fg_scores_mask > 0, cls_iou_targets, 0)
- else:
- cls_iou_targets = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
- dtype=torch.int64,
- device=target_labels.device) # (b, h*w, 80)
- loss[2] = self.bce(pred_scores, cls_iou_targets.to(dtype)).sum() / max(fg_mask.sum(), 1) # BCE
- elif isinstance(self.bce, QualityfocalLoss_YOLO):
- if fg_mask.sum():
- pos_ious = bbox_iou(pred_bboxes, target_bboxes / stride_tensor, xywh=False).clamp(min=1e-6).detach()
- # 10.0x Faster than torch.one_hot
- targets_onehot = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
- dtype=torch.int64,
- device=target_labels.device) # (b, h*w, 80)
- targets_onehot.scatter_(2, target_labels.unsqueeze(-1), 1)
- cls_iou_targets = pos_ious * targets_onehot
- fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.nc) # (b, h*w, 80)
- targets_onehot_pos = torch.where(fg_scores_mask > 0, targets_onehot, 0)
- cls_iou_targets = torch.where(fg_scores_mask > 0, cls_iou_targets, 0)
- else:
- cls_iou_targets = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
- dtype=torch.int64,
- device=target_labels.device) # (b, h*w, 80)
- targets_onehot_pos = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
- dtype=torch.int64,
- device=target_labels.device) # (b, h*w, 80)
- loss[2] = self.bce(pred_scores, cls_iou_targets.to(dtype), targets_onehot_pos.to(torch.bool)).sum() / max(fg_mask.sum(), 1)
- if fg_mask.sum():
- # Bbox loss
- loss[0], loss[3] = self.bbox_loss(
- pred_distri,
- pred_bboxes,
- anchor_points,
- target_bboxes / stride_tensor,
- target_scores,
- target_scores_sum,
- fg_mask,
- ((imgsz[0] ** 2 + imgsz[1] ** 2) / torch.square(stride_tensor)).repeat(1, batch_size).transpose(1, 0)
- )
- # Masks loss
- masks = batch["masks"].to(self.device).float()
- if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
- masks = F.interpolate(masks[None], (mask_h, mask_w), mode="nearest")[0]
- loss[1] = self.calculate_segmentation_loss(
- fg_mask, masks, target_gt_idx, target_bboxes, batch_idx, proto, pred_masks, imgsz, self.overlap
- )
- # WARNING: lines below prevent Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
- else:
- loss[1] += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss
- if isinstance(self.bce, (EMASlideLoss, SlideLoss)):
- if fg_mask.sum():
- auto_iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True).mean()
- else:
- auto_iou = -1
- loss[2] = self.bce(pred_scores, target_scores.to(dtype), auto_iou).sum() / target_scores_sum # BCE
-
- loss[0] *= self.hyp.box # box gain
- loss[1] *= self.hyp.box # seg gain
- loss[2] *= self.hyp.cls # cls gain
- loss[3] *= self.hyp.dfl # dfl gain
- return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
- @staticmethod
- def single_mask_loss(
- gt_mask: torch.Tensor, pred: torch.Tensor, proto: torch.Tensor, xyxy: torch.Tensor, area: torch.Tensor
- ) -> torch.Tensor:
- """
- Compute the instance segmentation loss for a single image.
- Args:
- gt_mask (torch.Tensor): Ground truth mask of shape (n, H, W), where n is the number of objects.
- pred (torch.Tensor): Predicted mask coefficients of shape (n, 32).
- proto (torch.Tensor): Prototype masks of shape (32, H, W).
- xyxy (torch.Tensor): Ground truth bounding boxes in xyxy format, normalized to [0, 1], of shape (n, 4).
- area (torch.Tensor): Area of each ground truth bounding box of shape (n,).
- Returns:
- (torch.Tensor): The calculated mask loss for a single image.
- Notes:
- The function uses the equation pred_mask = torch.einsum('in,nhw->ihw', pred, proto) to produce the
- predicted masks from the prototype masks and predicted mask coefficients.
- """
- pred_mask = torch.einsum("in,nhw->ihw", pred, proto) # (n, 32) @ (32, 80, 80) -> (n, 80, 80)
- loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction="none")
- return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).sum()
- def calculate_segmentation_loss(
- self,
- fg_mask: torch.Tensor,
- masks: torch.Tensor,
- target_gt_idx: torch.Tensor,
- target_bboxes: torch.Tensor,
- batch_idx: torch.Tensor,
- proto: torch.Tensor,
- pred_masks: torch.Tensor,
- imgsz: torch.Tensor,
- overlap: bool,
- ) -> torch.Tensor:
- """
- Calculate the loss for instance segmentation.
- Args:
- fg_mask (torch.Tensor): A binary tensor of shape (BS, N_anchors) indicating which anchors are positive.
- masks (torch.Tensor): Ground truth masks of shape (BS, H, W) if `overlap` is False, otherwise (BS, ?, H, W).
- target_gt_idx (torch.Tensor): Indexes of ground truth objects for each anchor of shape (BS, N_anchors).
- target_bboxes (torch.Tensor): Ground truth bounding boxes for each anchor of shape (BS, N_anchors, 4).
- batch_idx (torch.Tensor): Batch indices of shape (N_labels_in_batch, 1).
- proto (torch.Tensor): Prototype masks of shape (BS, 32, H, W).
- pred_masks (torch.Tensor): Predicted masks for each anchor of shape (BS, N_anchors, 32).
- imgsz (torch.Tensor): Size of the input image as a tensor of shape (2), i.e., (H, W).
- overlap (bool): Whether the masks in `masks` tensor overlap.
- Returns:
- (torch.Tensor): The calculated loss for instance segmentation.
- Notes:
- The batch loss can be computed for improved speed at higher memory usage.
- For example, pred_mask can be computed as follows:
- pred_mask = torch.einsum('in,nhw->ihw', pred, proto) # (i, 32) @ (32, 160, 160) -> (i, 160, 160)
- """
- _, _, mask_h, mask_w = proto.shape
- loss = 0
- # Normalize to 0-1
- target_bboxes_normalized = target_bboxes / imgsz[[1, 0, 1, 0]]
- # Areas of target bboxes
- marea = xyxy2xywh(target_bboxes_normalized)[..., 2:].prod(2)
- # Normalize to mask size
- mxyxy = target_bboxes_normalized * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=proto.device)
- for i, single_i in enumerate(zip(fg_mask, target_gt_idx, pred_masks, proto, mxyxy, marea, masks)):
- fg_mask_i, target_gt_idx_i, pred_masks_i, proto_i, mxyxy_i, marea_i, masks_i = single_i
- if fg_mask_i.any():
- mask_idx = target_gt_idx_i[fg_mask_i]
- if overlap:
- gt_mask = masks_i == (mask_idx + 1).view(-1, 1, 1)
- gt_mask = gt_mask.float()
- else:
- gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
- loss += self.single_mask_loss(
- gt_mask, pred_masks_i[fg_mask_i], proto_i, mxyxy_i[fg_mask_i], marea_i[fg_mask_i]
- )
- # WARNING: lines below prevents Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
- else:
- loss += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss
- return loss / fg_mask.sum()
- class v8PoseLoss(v8DetectionLoss):
- """Criterion class for computing training losses."""
- def __init__(self, model): # model must be de-paralleled
- """Initializes v8PoseLoss with model, sets keypoint variables and declares a keypoint loss instance."""
- super().__init__(model)
- self.kpt_shape = model.model[-1].kpt_shape
- self.bce_pose = nn.BCEWithLogitsLoss()
- is_pose = self.kpt_shape == [17, 3]
- nkpt = self.kpt_shape[0] # number of keypoints
- sigmas = torch.from_numpy(OKS_SIGMA).to(self.device) if is_pose else torch.ones(nkpt, device=self.device) / nkpt
- self.keypoint_loss = KeypointLoss(sigmas=sigmas)
- def __call__(self, preds, batch):
- """Calculate the total loss and detach it."""
- loss = torch.zeros(5, device=self.device) # box, cls, dfl, kpt_location, kpt_visibility
- feats, pred_kpts = preds if isinstance(preds[0], list) else preds[1]
- pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
- (self.reg_max * 4, self.nc), 1
- )
- # B, grids, ..
- pred_scores = pred_scores.permute(0, 2, 1).contiguous()
- pred_distri = pred_distri.permute(0, 2, 1).contiguous()
- pred_kpts = pred_kpts.permute(0, 2, 1).contiguous()
- dtype = pred_scores.dtype
- imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
- anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
- # Targets
- batch_size = pred_scores.shape[0]
- batch_idx = batch["batch_idx"].view(-1, 1)
- targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"]), 1)
- targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
- gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
- mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0.0)
- # Pboxes
- pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
- pred_kpts = self.kpts_decode(anchor_points, pred_kpts.view(batch_size, -1, *self.kpt_shape)) # (b, h*w, 17, 3)
- if isinstance(self.assigner, ATSSAssigner):
- anchors, _, n_anchors_list, _ = \
- generate_anchors(feats, self.fpn_strides, self.grid_cell_size, self.grid_cell_offset, device=feats[0].device)
- target_labels, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(anchors, n_anchors_list, gt_labels, gt_bboxes, mask_gt, pred_bboxes.detach() * stride_tensor)
- else:
- target_labels, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
- pred_scores.detach().sigmoid(),
- (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
- anchor_points * stride_tensor,
- gt_labels,
- gt_bboxes,
- mask_gt,
- )
- target_scores_sum = max(target_scores.sum(), 1)
- # Cls loss
- if isinstance(self.bce, (nn.BCEWithLogitsLoss, FocalLoss_YOLO)):
- loss[3] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
- elif isinstance(self.bce, VarifocalLoss_YOLO):
- if fg_mask.sum():
- pos_ious = bbox_iou(pred_bboxes, target_bboxes / stride_tensor, xywh=False).clamp(min=1e-6).detach()
- # 10.0x Faster than torch.one_hot
- cls_iou_targets = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
- dtype=torch.int64,
- device=target_labels.device) # (b, h*w, 80)
- cls_iou_targets.scatter_(2, target_labels.unsqueeze(-1), 1)
- cls_iou_targets = pos_ious * cls_iou_targets
- fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.nc) # (b, h*w, 80)
- cls_iou_targets = torch.where(fg_scores_mask > 0, cls_iou_targets, 0)
- else:
- cls_iou_targets = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
- dtype=torch.int64,
- device=target_labels.device) # (b, h*w, 80)
- loss[3] = self.bce(pred_scores, cls_iou_targets.to(dtype)).sum() / max(fg_mask.sum(), 1) # BCE
- elif isinstance(self.bce, QualityfocalLoss_YOLO):
- if fg_mask.sum():
- pos_ious = bbox_iou(pred_bboxes, target_bboxes / stride_tensor, xywh=False).clamp(min=1e-6).detach()
- # 10.0x Faster than torch.one_hot
- targets_onehot = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
- dtype=torch.int64,
- device=target_labels.device) # (b, h*w, 80)
- targets_onehot.scatter_(2, target_labels.unsqueeze(-1), 1)
- cls_iou_targets = pos_ious * targets_onehot
- fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.nc) # (b, h*w, 80)
- targets_onehot_pos = torch.where(fg_scores_mask > 0, targets_onehot, 0)
- cls_iou_targets = torch.where(fg_scores_mask > 0, cls_iou_targets, 0)
- else:
- cls_iou_targets = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
- dtype=torch.int64,
- device=target_labels.device) # (b, h*w, 80)
- targets_onehot_pos = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
- dtype=torch.int64,
- device=target_labels.device) # (b, h*w, 80)
- loss[3] = self.bce(pred_scores, cls_iou_targets.to(dtype), targets_onehot_pos.to(torch.bool)).sum() / max(fg_mask.sum(), 1)
- # Bbox loss
- if fg_mask.sum():
- target_bboxes /= stride_tensor
- loss[0], loss[4] = self.bbox_loss(
- pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask,
- ((imgsz[0] ** 2 + imgsz[1] ** 2) / torch.square(stride_tensor)).repeat(1, batch_size).transpose(1, 0)
- )
- keypoints = batch["keypoints"].to(self.device).float().clone()
- keypoints[..., 0] *= imgsz[1]
- keypoints[..., 1] *= imgsz[0]
- loss[1], loss[2] = self.calculate_keypoints_loss(
- fg_mask, target_gt_idx, keypoints, batch_idx, stride_tensor, target_bboxes, pred_kpts
- )
- if isinstance(self.bce, (EMASlideLoss, SlideLoss)):
- if fg_mask.sum():
- auto_iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True).mean()
- else:
- auto_iou = -1
- loss[3] = self.bce(pred_scores, target_scores.to(dtype), auto_iou).sum() / target_scores_sum # BCE
-
- loss[0] *= self.hyp.box # box gain
- loss[1] *= self.hyp.pose # pose gain
- loss[2] *= self.hyp.kobj # kobj gain
- loss[3] *= self.hyp.cls # cls gain
- loss[4] *= self.hyp.dfl # dfl gain
- return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
- @staticmethod
- def kpts_decode(anchor_points, pred_kpts):
- """Decodes predicted keypoints to image coordinates."""
- y = pred_kpts.clone()
- y[..., :2] *= 2.0
- y[..., 0] += anchor_points[:, [0]] - 0.5
- y[..., 1] += anchor_points[:, [1]] - 0.5
- return y
- def calculate_keypoints_loss(
- self, masks, target_gt_idx, keypoints, batch_idx, stride_tensor, target_bboxes, pred_kpts
- ):
- """
- Calculate the keypoints loss for the model.
- This function calculates the keypoints loss and keypoints object loss for a given batch. The keypoints loss is
- based on the difference between the predicted keypoints and ground truth keypoints. The keypoints object loss is
- a binary classification loss that classifies whether a keypoint is present or not.
- Args:
- masks (torch.Tensor): Binary mask tensor indicating object presence, shape (BS, N_anchors).
- target_gt_idx (torch.Tensor): Index tensor mapping anchors to ground truth objects, shape (BS, N_anchors).
- keypoints (torch.Tensor): Ground truth keypoints, shape (N_kpts_in_batch, N_kpts_per_object, kpts_dim).
- batch_idx (torch.Tensor): Batch index tensor for keypoints, shape (N_kpts_in_batch, 1).
- stride_tensor (torch.Tensor): Stride tensor for anchors, shape (N_anchors, 1).
- target_bboxes (torch.Tensor): Ground truth boxes in (x1, y1, x2, y2) format, shape (BS, N_anchors, 4).
- pred_kpts (torch.Tensor): Predicted keypoints, shape (BS, N_anchors, N_kpts_per_object, kpts_dim).
- Returns:
- (tuple): Returns a tuple containing:
- - kpts_loss (torch.Tensor): The keypoints loss.
- - kpts_obj_loss (torch.Tensor): The keypoints object loss.
- """
- batch_idx = batch_idx.flatten()
- batch_size = len(masks)
- # Find the maximum number of keypoints in a single image
- max_kpts = torch.unique(batch_idx, return_counts=True)[1].max()
- # Create a tensor to hold batched keypoints
- batched_keypoints = torch.zeros(
- (batch_size, max_kpts, keypoints.shape[1], keypoints.shape[2]), device=keypoints.device
- )
- # TODO: any idea how to vectorize this?
- # Fill batched_keypoints with keypoints based on batch_idx
- for i in range(batch_size):
- keypoints_i = keypoints[batch_idx == i]
- batched_keypoints[i, : keypoints_i.shape[0]] = keypoints_i
- # Expand dimensions of target_gt_idx to match the shape of batched_keypoints
- target_gt_idx_expanded = target_gt_idx.unsqueeze(-1).unsqueeze(-1)
- # Use target_gt_idx_expanded to select keypoints from batched_keypoints
- selected_keypoints = batched_keypoints.gather(
- 1, target_gt_idx_expanded.expand(-1, -1, keypoints.shape[1], keypoints.shape[2])
- )
- # Divide coordinates by stride
- selected_keypoints /= stride_tensor.view(1, -1, 1, 1)
- kpts_loss = 0
- kpts_obj_loss = 0
- if masks.any():
- gt_kpt = selected_keypoints[masks]
- area = xyxy2xywh(target_bboxes[masks])[:, 2:].prod(1, keepdim=True)
- pred_kpt = pred_kpts[masks]
- kpt_mask = gt_kpt[..., 2] != 0 if gt_kpt.shape[-1] == 3 else torch.full_like(gt_kpt[..., 0], True)
- kpts_loss = self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area) # pose loss
- if pred_kpt.shape[-1] == 3:
- kpts_obj_loss = self.bce_pose(pred_kpt[..., 2], kpt_mask.float()) # keypoint obj loss
- return kpts_loss, kpts_obj_loss
- class v8ClassificationLoss:
- """Criterion class for computing training losses."""
- def __call__(self, preds, batch):
- """Compute the classification loss between predictions and true labels."""
- loss = F.cross_entropy(preds, batch["cls"], reduction="mean")
- loss_items = loss.detach()
- return loss, loss_items
- class v8OBBLoss(v8DetectionLoss):
- def __init__(self, model):
- """
- Initializes v8OBBLoss with model, assigner, and rotated bbox loss.
- Note model must be de-paralleled.
- """
- super().__init__(model)
- self.assigner = RotatedTaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0)
- self.bbox_loss = RotatedBboxLoss(self.reg_max).to(self.device)
- def preprocess(self, targets, batch_size, scale_tensor):
- """Preprocesses the target counts and matches with the input batch size to output a tensor."""
- if targets.shape[0] == 0:
- out = torch.zeros(batch_size, 0, 6, device=self.device)
- else:
- i = targets[:, 0] # image index
- _, counts = i.unique(return_counts=True)
- counts = counts.to(dtype=torch.int32)
- out = torch.zeros(batch_size, counts.max(), 6, device=self.device)
- for j in range(batch_size):
- matches = i == j
- n = matches.sum()
- if n:
- bboxes = targets[matches, 2:]
- bboxes[..., :4].mul_(scale_tensor)
- out[j, :n] = torch.cat([targets[matches, 1:2], bboxes], dim=-1)
- return out
- def __call__(self, preds, batch):
- """Calculate and return the loss for the YOLO model."""
- loss = torch.zeros(3, device=self.device) # box, cls, dfl
- feats, pred_angle = preds if isinstance(preds[0], list) else preds[1]
- batch_size = pred_angle.shape[0] # batch size, number of masks, mask height, mask width
- pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
- (self.reg_max * 4, self.nc), 1
- )
- # b, grids, ..
- pred_scores = pred_scores.permute(0, 2, 1).contiguous()
- pred_distri = pred_distri.permute(0, 2, 1).contiguous()
- pred_angle = pred_angle.permute(0, 2, 1).contiguous()
- dtype = pred_scores.dtype
- imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
- anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
- # targets
- try:
- batch_idx = batch["batch_idx"].view(-1, 1)
- targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"].view(-1, 5)), 1)
- rw, rh = targets[:, 4] * imgsz[0].item(), targets[:, 5] * imgsz[1].item()
- targets = targets[(rw >= 2) & (rh >= 2)] # filter rboxes of tiny size to stabilize training
- targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
- gt_labels, gt_bboxes = targets.split((1, 5), 2) # cls, xywhr
- mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0.0)
- except RuntimeError as e:
- raise TypeError(
- "ERROR ❌ OBB dataset incorrectly formatted or not a OBB dataset.\n"
- "This error can occur when incorrectly training a 'OBB' model on a 'detect' dataset, "
- "i.e. 'yolo train model=yolov8n-obb.pt data=dota8.yaml'.\nVerify your dataset is a "
- "correctly formatted 'OBB' dataset using 'data=dota8.yaml' "
- "as an example.\nSee https://docs.ultralytics.com/datasets/obb/ for help."
- ) from e
- # Pboxes
- pred_bboxes = self.bbox_decode(anchor_points, pred_distri, pred_angle) # xyxy, (b, h*w, 4)
- bboxes_for_assigner = pred_bboxes.clone().detach()
- # Only the first four elements need to be scaled
- bboxes_for_assigner[..., :4] *= stride_tensor
- target_labels, target_bboxes, target_scores, fg_mask, _ = self.assigner(
- pred_scores.detach().sigmoid(),
- bboxes_for_assigner.type(gt_bboxes.dtype),
- anchor_points * stride_tensor,
- gt_labels,
- gt_bboxes,
- mask_gt,
- )
- target_scores_sum = max(target_scores.sum(), 1)
- # Cls loss
- if isinstance(self.bce, (nn.BCEWithLogitsLoss, FocalLoss_YOLO)):
- loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
- elif isinstance(self.bce, VarifocalLoss_YOLO):
- if fg_mask.sum():
- pos_ious = bbox_iou(pred_bboxes, target_bboxes / stride_tensor, xywh=False).clamp(min=1e-6).detach()
- # 10.0x Faster than torch.one_hot
- cls_iou_targets = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
- dtype=torch.int64,
- device=target_labels.device) # (b, h*w, 80)
- cls_iou_targets.scatter_(2, target_labels.unsqueeze(-1), 1)
- cls_iou_targets = pos_ious * cls_iou_targets
- fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.nc) # (b, h*w, 80)
- cls_iou_targets = torch.where(fg_scores_mask > 0, cls_iou_targets, 0)
- else:
- cls_iou_targets = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
- dtype=torch.int64,
- device=target_labels.device) # (b, h*w, 80)
- loss[1] = self.bce(pred_scores, cls_iou_targets.to(dtype)).sum() / max(fg_mask.sum(), 1) # BCE
- elif isinstance(self.bce, QualityfocalLoss_YOLO):
- if fg_mask.sum():
- pos_ious = bbox_iou(pred_bboxes, target_bboxes / stride_tensor, xywh=False).clamp(min=1e-6).detach()
- # 10.0x Faster than torch.one_hot
- targets_onehot = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
- dtype=torch.int64,
- device=target_labels.device) # (b, h*w, 80)
- targets_onehot.scatter_(2, target_labels.unsqueeze(-1), 1)
- cls_iou_targets = pos_ious * targets_onehot
- fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.nc) # (b, h*w, 80)
- targets_onehot_pos = torch.where(fg_scores_mask > 0, targets_onehot, 0)
- cls_iou_targets = torch.where(fg_scores_mask > 0, cls_iou_targets, 0)
- else:
- cls_iou_targets = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
- dtype=torch.int64,
- device=target_labels.device) # (b, h*w, 80)
- targets_onehot_pos = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
- dtype=torch.int64,
- device=target_labels.device) # (b, h*w, 80)
- loss[1] = self.bce(pred_scores, cls_iou_targets.to(dtype), targets_onehot_pos.to(torch.bool)).sum() / max(fg_mask.sum(), 1)
- # Bbox loss
- if fg_mask.sum():
- target_bboxes[..., :4] /= stride_tensor
- loss[0], loss[2] = self.bbox_loss(
- pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask
- )
- else:
- loss[0] += (pred_angle * 0).sum()
- loss[0] *= self.hyp.box # box gain
- loss[1] *= self.hyp.cls # cls gain
- loss[2] *= self.hyp.dfl # dfl gain
- return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
- def bbox_decode(self, anchor_points, pred_dist, pred_angle):
- """
- Decode predicted object bounding box coordinates from anchor points and distribution.
- Args:
- anchor_points (torch.Tensor): Anchor points, (h*w, 2).
- pred_dist (torch.Tensor): Predicted rotated distance, (bs, h*w, 4).
- pred_angle (torch.Tensor): Predicted angle, (bs, h*w, 1).
- Returns:
- (torch.Tensor): Predicted rotated bounding boxes with angles, (bs, h*w, 5).
- """
- if self.use_dfl:
- b, a, c = pred_dist.shape # batch, anchors, channels
- pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
- return torch.cat((dist2rbox(pred_dist, pred_angle, anchor_points), pred_angle), dim=-1)
- class E2EDetectLoss:
- """Criterion class for computing training losses."""
- def __init__(self, model):
- """Initialize E2EDetectLoss with one-to-many and one-to-one detection losses using the provided model."""
- self.one2many = v8DetectionLoss(model, tal_topk=10)
- self.one2one = v8DetectionLoss(model, tal_topk=1)
- def __call__(self, preds, batch):
- """Calculate the sum of the loss for box, cls and dfl multiplied by batch size."""
- preds = preds[1] if isinstance(preds, tuple) else preds
- one2many = preds["one2many"]
- loss_one2many = self.one2many(one2many, batch)
- one2one = preds["one2one"]
- loss_one2one = self.one2one(one2one, batch)
- return loss_one2many[0] + loss_one2one[0], loss_one2many[1] + loss_one2one[1]
|