12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- """Functions for estimating the best YOLO batch size to use a fraction of the available CUDA memory in PyTorch."""
- from copy import deepcopy
- import numpy as np
- import torch
- from ultralytics.utils import DEFAULT_CFG, LOGGER, colorstr
- from ultralytics.utils.torch_utils import profile
- def check_train_batch_size(model, imgsz=640, amp=True, batch=-1):
- """
- Compute optimal YOLO training batch size using the autobatch() function.
- Args:
- model (torch.nn.Module): YOLO model to check batch size for.
- imgsz (int): Image size used for training.
- amp (bool): If True, use automatic mixed precision (AMP) for training.
- Returns:
- (int): Optimal batch size computed using the autobatch() function.
- """
- with torch.cuda.amp.autocast(amp):
- return autobatch(deepcopy(model).train(), imgsz, fraction=batch if 0.0 < batch < 1.0 else 0.6)
- def autobatch(model, imgsz=640, fraction=0.60, batch_size=DEFAULT_CFG.batch):
- """
- Automatically estimate the best YOLO batch size to use a fraction of the available CUDA memory.
- Args:
- model (torch.nn.module): YOLO model to compute batch size for.
- imgsz (int, optional): The image size used as input for the YOLO model. Defaults to 640.
- fraction (float, optional): The fraction of available CUDA memory to use. Defaults to 0.60.
- batch_size (int, optional): The default batch size to use if an error is detected. Defaults to 16.
- Returns:
- (int): The optimal batch size.
- """
- # Check device
- prefix = colorstr("AutoBatch: ")
- LOGGER.info(f"{prefix}Computing optimal batch size for imgsz={imgsz} at {fraction * 100}% CUDA memory utilization.")
- device = next(model.parameters()).device # get model device
- if device.type in {"cpu", "mps"}:
- LOGGER.info(f"{prefix} ⚠️ intended for CUDA devices, using default batch-size {batch_size}")
- return batch_size
- if torch.backends.cudnn.benchmark:
- LOGGER.info(f"{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}")
- return batch_size
- # Inspect CUDA memory
- gb = 1 << 30 # bytes to GiB (1024 ** 3)
- d = str(device).upper() # 'CUDA:0'
- properties = torch.cuda.get_device_properties(device) # device properties
- t = properties.total_memory / gb # GiB total
- r = torch.cuda.memory_reserved(device) / gb # GiB reserved
- a = torch.cuda.memory_allocated(device) / gb # GiB allocated
- f = t - (r + a) # GiB free
- LOGGER.info(f"{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free")
- # Profile batch sizes
- batch_sizes = [1, 2, 4, 8, 16]
- try:
- img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
- results = profile(img, model, n=3, device=device)
- # Fit a solution
- y = [x[2] for x in results if x] # memory [2]
- p = np.polyfit(batch_sizes[: len(y)], y, deg=1) # first degree polynomial fit
- b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
- if None in results: # some sizes failed
- i = results.index(None) # first fail index
- if b >= batch_sizes[i]: # y intercept above failure point
- b = batch_sizes[max(i - 1, 0)] # select prior safe point
- if b < 1 or b > 1024: # b outside of safe range
- b = batch_size
- LOGGER.info(f"{prefix}WARNING ⚠️ CUDA anomaly detected, using default batch-size {batch_size}.")
- fraction = (np.polyval(p, b) + r + a) / t # actual fraction predicted
- LOGGER.info(f"{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅")
- return b
- except Exception as e:
- LOGGER.warning(f"{prefix}WARNING ⚠️ error detected: {e}, using default batch-size {batch_size}.")
- return batch_size
|