123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- from collections import defaultdict
- from time import time
- import cv2
- import numpy as np
- from ultralytics.utils.checks import check_imshow
- from ultralytics.utils.plotting import Annotator, colors
- class SpeedEstimator:
- """A class to estimate the speed of objects in a real-time video stream based on their tracks."""
- def __init__(self, names, reg_pts=None, view_img=False, line_thickness=2, region_thickness=5, spdl_dist_thresh=10):
- """
- Initializes the SpeedEstimator with the given parameters.
- Args:
- names (dict): Dictionary of class names.
- reg_pts (list, optional): List of region points for speed estimation. Defaults to [(20, 400), (1260, 400)].
- view_img (bool, optional): Whether to display the image with annotations. Defaults to False.
- line_thickness (int, optional): Thickness of the lines for drawing boxes and tracks. Defaults to 2.
- region_thickness (int, optional): Thickness of the region lines. Defaults to 5.
- spdl_dist_thresh (int, optional): Distance threshold for speed calculation. Defaults to 10.
- """
- # Visual & image information
- self.im0 = None
- self.annotator = None
- self.view_img = view_img
- # Region information
- self.reg_pts = reg_pts if reg_pts is not None else [(20, 400), (1260, 400)]
- self.region_thickness = region_thickness
- # Tracking information
- self.clss = None
- self.names = names
- self.boxes = None
- self.trk_ids = None
- self.trk_pts = None
- self.line_thickness = line_thickness
- self.trk_history = defaultdict(list)
- # Speed estimation information
- self.current_time = 0
- self.dist_data = {}
- self.trk_idslist = []
- self.spdl_dist_thresh = spdl_dist_thresh
- self.trk_previous_times = {}
- self.trk_previous_points = {}
- # Check if the environment supports imshow
- self.env_check = check_imshow(warn=True)
- def extract_tracks(self, tracks):
- """
- Extracts results from the provided tracking data.
- Args:
- tracks (list): List of tracks obtained from the object tracking process.
- """
- self.boxes = tracks[0].boxes.xyxy.cpu()
- self.clss = tracks[0].boxes.cls.cpu().tolist()
- self.trk_ids = tracks[0].boxes.id.int().cpu().tolist()
- def store_track_info(self, track_id, box):
- """
- Stores track data.
- Args:
- track_id (int): Object track id.
- box (list): Object bounding box data.
- Returns:
- (list): Updated tracking history for the given track_id.
- """
- track = self.trk_history[track_id]
- bbox_center = (float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2))
- track.append(bbox_center)
- if len(track) > 30:
- track.pop(0)
- self.trk_pts = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
- return track
- def plot_box_and_track(self, track_id, box, cls, track):
- """
- Plots track and bounding box.
- Args:
- track_id (int): Object track id.
- box (list): Object bounding box data.
- cls (str): Object class name.
- track (list): Tracking history for drawing tracks path.
- """
- speed_label = f"{int(self.dist_data[track_id])} km/h" if track_id in self.dist_data else self.names[int(cls)]
- bbox_color = colors(int(track_id)) if track_id in self.dist_data else (255, 0, 255)
- self.annotator.box_label(box, speed_label, bbox_color)
- cv2.polylines(self.im0, [self.trk_pts], isClosed=False, color=(0, 255, 0), thickness=1)
- cv2.circle(self.im0, (int(track[-1][0]), int(track[-1][1])), 5, bbox_color, -1)
- def calculate_speed(self, trk_id, track):
- """
- Calculates the speed of an object.
- Args:
- trk_id (int): Object track id.
- track (list): Tracking history for drawing tracks path.
- """
- if not self.reg_pts[0][0] < track[-1][0] < self.reg_pts[1][0]:
- return
- if self.reg_pts[1][1] - self.spdl_dist_thresh < track[-1][1] < self.reg_pts[1][1] + self.spdl_dist_thresh:
- direction = "known"
- elif self.reg_pts[0][1] - self.spdl_dist_thresh < track[-1][1] < self.reg_pts[0][1] + self.spdl_dist_thresh:
- direction = "known"
- else:
- direction = "unknown"
- if self.trk_previous_times.get(trk_id) != 0 and direction != "unknown" and trk_id not in self.trk_idslist:
- self.trk_idslist.append(trk_id)
- time_difference = time() - self.trk_previous_times[trk_id]
- if time_difference > 0:
- dist_difference = np.abs(track[-1][1] - self.trk_previous_points[trk_id][1])
- speed = dist_difference / time_difference
- self.dist_data[trk_id] = speed
- self.trk_previous_times[trk_id] = time()
- self.trk_previous_points[trk_id] = track[-1]
- def estimate_speed(self, im0, tracks, region_color=(255, 0, 0)):
- """
- Estimates the speed of objects based on tracking data.
- Args:
- im0 (ndarray): Image.
- tracks (list): List of tracks obtained from the object tracking process.
- region_color (tuple, optional): Color to use when drawing regions. Defaults to (255, 0, 0).
- Returns:
- (ndarray): The image with annotated boxes and tracks.
- """
- self.im0 = im0
- if tracks[0].boxes.id is None:
- if self.view_img and self.env_check:
- self.display_frames()
- return im0
- self.extract_tracks(tracks)
- self.annotator = Annotator(self.im0, line_width=self.line_thickness)
- self.annotator.draw_region(reg_pts=self.reg_pts, color=region_color, thickness=self.region_thickness)
- for box, trk_id, cls in zip(self.boxes, self.trk_ids, self.clss):
- track = self.store_track_info(trk_id, box)
- if trk_id not in self.trk_previous_times:
- self.trk_previous_times[trk_id] = 0
- self.plot_box_and_track(trk_id, box, cls, track)
- self.calculate_speed(trk_id, track)
- if self.view_img and self.env_check:
- self.display_frames()
- return im0
- def display_frames(self):
- """Displays the current frame."""
- cv2.imshow("Ultralytics Speed Estimation", self.im0)
- if cv2.waitKey(1) & 0xFF == ord("q"):
- return
- if __name__ == "__main__":
- names = {0: "person", 1: "car"} # example class names
- speed_estimator = SpeedEstimator(names)
|