123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import math
- import cv2
- from ultralytics.utils.checks import check_imshow
- from ultralytics.utils.plotting import Annotator, colors
- class DistanceCalculation:
- """A class to calculate distance between two objects in a real-time video stream based on their tracks."""
- def __init__(
- self,
- names,
- pixels_per_meter=10,
- view_img=False,
- line_thickness=2,
- line_color=(255, 255, 0),
- centroid_color=(255, 0, 255),
- ):
- """
- Initializes the DistanceCalculation class with the given parameters.
- Args:
- names (dict): Dictionary mapping class indices to class names.
- pixels_per_meter (int, optional): Conversion factor from pixels to meters. Defaults to 10.
- view_img (bool, optional): Flag to indicate if the video stream should be displayed. Defaults to False.
- line_thickness (int, optional): Thickness of the lines drawn on the image. Defaults to 2.
- line_color (tuple, optional): Color of the lines drawn on the image (BGR format). Defaults to (255, 255, 0).
- centroid_color (tuple, optional): Color of the centroids drawn (BGR format). Defaults to (255, 0, 255).
- """
- # Visual & image information
- self.im0 = None
- self.annotator = None
- self.view_img = view_img
- self.line_color = line_color
- self.centroid_color = centroid_color
- # Prediction & tracking information
- self.clss = None
- self.names = names
- self.boxes = None
- self.line_thickness = line_thickness
- self.trk_ids = None
- # Distance calculation information
- self.centroids = []
- self.pixel_per_meter = pixels_per_meter
- # Mouse event information
- self.left_mouse_count = 0
- self.selected_boxes = {}
- # Check if environment supports imshow
- self.env_check = check_imshow(warn=True)
- def mouse_event_for_distance(self, event, x, y, flags, param):
- """
- Handles mouse events to select regions in a real-time video stream.
- Args:
- event (int): Type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.).
- x (int): X-coordinate of the mouse pointer.
- y (int): Y-coordinate of the mouse pointer.
- flags (int): Flags associated with the event (e.g., cv2.EVENT_FLAG_CTRLKEY, cv2.EVENT_FLAG_SHIFTKEY, etc.).
- param (dict): Additional parameters passed to the function.
- """
- if event == cv2.EVENT_LBUTTONDOWN:
- self.left_mouse_count += 1
- if self.left_mouse_count <= 2:
- for box, track_id in zip(self.boxes, self.trk_ids):
- if box[0] < x < box[2] and box[1] < y < box[3] and track_id not in self.selected_boxes:
- self.selected_boxes[track_id] = box
- elif event == cv2.EVENT_RBUTTONDOWN:
- self.selected_boxes = {}
- self.left_mouse_count = 0
- def extract_tracks(self, tracks):
- """
- Extracts tracking results from the provided data.
- Args:
- tracks (list): List of tracks obtained from the object tracking process.
- """
- self.boxes = tracks[0].boxes.xyxy.cpu()
- self.clss = tracks[0].boxes.cls.cpu().tolist()
- self.trk_ids = tracks[0].boxes.id.int().cpu().tolist()
- @staticmethod
- def calculate_centroid(box):
- """
- Calculates the centroid of a bounding box.
- Args:
- box (list): Bounding box coordinates [x1, y1, x2, y2].
- Returns:
- (tuple): Centroid coordinates (x, y).
- """
- return int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2)
- def calculate_distance(self, centroid1, centroid2):
- """
- Calculates the distance between two centroids.
- Args:
- centroid1 (tuple): Coordinates of the first centroid (x, y).
- centroid2 (tuple): Coordinates of the second centroid (x, y).
- Returns:
- (tuple): Distance in meters and millimeters.
- """
- pixel_distance = math.sqrt((centroid1[0] - centroid2[0]) ** 2 + (centroid1[1] - centroid2[1]) ** 2)
- distance_m = pixel_distance / self.pixel_per_meter
- distance_mm = distance_m * 1000
- return distance_m, distance_mm
- def start_process(self, im0, tracks):
- """
- Processes the video frame and calculates the distance between two bounding boxes.
- Args:
- im0 (ndarray): The image frame.
- tracks (list): List of tracks obtained from the object tracking process.
- Returns:
- (ndarray): The processed image frame.
- """
- self.im0 = im0
- if tracks[0].boxes.id is None:
- if self.view_img:
- self.display_frames()
- return im0
- self.extract_tracks(tracks)
- self.annotator = Annotator(self.im0, line_width=self.line_thickness)
- for box, cls, track_id in zip(self.boxes, self.clss, self.trk_ids):
- self.annotator.box_label(box, color=colors(int(cls), True), label=self.names[int(cls)])
- if len(self.selected_boxes) == 2:
- for trk_id in self.selected_boxes.keys():
- if trk_id == track_id:
- self.selected_boxes[track_id] = box
- if len(self.selected_boxes) == 2:
- self.centroids = [self.calculate_centroid(self.selected_boxes[trk_id]) for trk_id in self.selected_boxes]
- distance_m, distance_mm = self.calculate_distance(self.centroids[0], self.centroids[1])
- self.annotator.plot_distance_and_line(
- distance_m, distance_mm, self.centroids, self.line_color, self.centroid_color
- )
- self.centroids = []
- if self.view_img and self.env_check:
- self.display_frames()
- return im0
- def display_frames(self):
- """Displays the current frame with annotations."""
- cv2.namedWindow("Ultralytics Distance Estimation")
- cv2.setMouseCallback("Ultralytics Distance Estimation", self.mouse_event_for_distance)
- cv2.imshow("Ultralytics Distance Estimation", self.im0)
- if cv2.waitKey(1) & 0xFF == ord("q"):
- return
- if __name__ == "__main__":
- names = {0: "person", 1: "car"} # example class names
- distance_calculation = DistanceCalculation(names)
|