123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import warnings
- from itertools import cycle
- import cv2
- import matplotlib.pyplot as plt
- import numpy as np
- from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
- from matplotlib.figure import Figure
- class Analytics:
- """A class to create and update various types of charts (line, bar, pie, area) for visual analytics."""
- def __init__(
- self,
- type,
- writer,
- im0_shape,
- title="ultralytics",
- x_label="x",
- y_label="y",
- bg_color="white",
- fg_color="black",
- line_color="yellow",
- line_width=2,
- points_width=10,
- fontsize=13,
- view_img=False,
- save_img=True,
- max_points=50,
- ):
- """
- Initialize the Analytics class with various chart types.
- Args:
- type (str): Type of chart to initialize ('line', 'bar', 'pie', or 'area').
- writer (object): Video writer object to save the frames.
- im0_shape (tuple): Shape of the input image (width, height).
- title (str): Title of the chart.
- x_label (str): Label for the x-axis.
- y_label (str): Label for the y-axis.
- bg_color (str): Background color of the chart.
- fg_color (str): Foreground (text) color of the chart.
- line_color (str): Line color for line charts.
- line_width (int): Width of the lines in line charts.
- points_width (int): Width of line points highlighter
- fontsize (int): Font size for chart text.
- view_img (bool): Whether to display the image.
- save_img (bool): Whether to save the image.
- max_points (int): Specifies when to remove the oldest points in a graph for multiple lines.
- """
- self.bg_color = bg_color
- self.fg_color = fg_color
- self.view_img = view_img
- self.save_img = save_img
- self.title = title
- self.writer = writer
- self.max_points = max_points
- self.line_color = line_color
- self.x_label = x_label
- self.y_label = y_label
- self.points_width = points_width
- self.line_width = line_width
- self.fontsize = fontsize
- # Set figure size based on image shape
- figsize = (im0_shape[0] / 100, im0_shape[1] / 100)
- if type in {"line", "area"}:
- # Initialize line or area plot
- self.lines = {}
- self.fig = Figure(facecolor=self.bg_color, figsize=figsize)
- self.canvas = FigureCanvas(self.fig)
- self.ax = self.fig.add_subplot(111, facecolor=self.bg_color)
- if type == "line":
- (self.line,) = self.ax.plot([], [], color=self.line_color, linewidth=self.line_width)
- elif type in {"bar", "pie"}:
- # Initialize bar or pie plot
- self.fig, self.ax = plt.subplots(figsize=figsize, facecolor=self.bg_color)
- self.ax.set_facecolor(self.bg_color)
- color_palette = [
- (31, 119, 180),
- (255, 127, 14),
- (44, 160, 44),
- (214, 39, 40),
- (148, 103, 189),
- (140, 86, 75),
- (227, 119, 194),
- (127, 127, 127),
- (188, 189, 34),
- (23, 190, 207),
- ]
- self.color_palette = [(r / 255, g / 255, b / 255, 1) for r, g, b in color_palette]
- self.color_cycle = cycle(self.color_palette)
- self.color_mapping = {}
- # Ensure pie chart is circular
- self.ax.axis("equal") if type == "pie" else None
- # Set common axis properties
- self.ax.set_title(self.title, color=self.fg_color, fontsize=self.fontsize)
- self.ax.set_xlabel(x_label, color=self.fg_color, fontsize=self.fontsize - 3)
- self.ax.set_ylabel(y_label, color=self.fg_color, fontsize=self.fontsize - 3)
- self.ax.tick_params(axis="both", colors=self.fg_color)
- def update_area(self, frame_number, counts_dict):
- """
- Update the area graph with new data for multiple classes.
- Args:
- frame_number (int): The current frame number.
- counts_dict (dict): Dictionary with class names as keys and counts as values.
- """
- x_data = np.array([])
- y_data_dict = {key: np.array([]) for key in counts_dict.keys()}
- if self.ax.lines:
- x_data = self.ax.lines[0].get_xdata()
- for line, key in zip(self.ax.lines, counts_dict.keys()):
- y_data_dict[key] = line.get_ydata()
- x_data = np.append(x_data, float(frame_number))
- max_length = len(x_data)
- for key in counts_dict.keys():
- y_data_dict[key] = np.append(y_data_dict[key], float(counts_dict[key]))
- if len(y_data_dict[key]) < max_length:
- y_data_dict[key] = np.pad(y_data_dict[key], (0, max_length - len(y_data_dict[key])), "constant")
- # Remove the oldest points if the number of points exceeds max_points
- if len(x_data) > self.max_points:
- x_data = x_data[1:]
- for key in counts_dict.keys():
- y_data_dict[key] = y_data_dict[key][1:]
- self.ax.clear()
- colors = ["#E1FF25", "#0BDBEB", "#FF64DA", "#111F68", "#042AFF"]
- color_cycle = cycle(colors)
- for key, y_data in y_data_dict.items():
- color = next(color_cycle)
- self.ax.fill_between(x_data, y_data, color=color, alpha=0.6)
- self.ax.plot(
- x_data,
- y_data,
- color=color,
- linewidth=self.line_width,
- marker="o",
- markersize=self.points_width,
- label=f"{key} Data Points",
- )
- self.ax.set_title(self.title, color=self.fg_color, fontsize=self.fontsize)
- self.ax.set_xlabel(self.x_label, color=self.fg_color, fontsize=self.fontsize - 3)
- self.ax.set_ylabel(self.y_label, color=self.fg_color, fontsize=self.fontsize - 3)
- legend = self.ax.legend(loc="upper left", fontsize=13, facecolor=self.bg_color, edgecolor=self.fg_color)
- # Set legend text color
- for text in legend.get_texts():
- text.set_color(self.fg_color)
- self.canvas.draw()
- im0 = np.array(self.canvas.renderer.buffer_rgba())
- self.write_and_display(im0)
- def update_line(self, frame_number, total_counts):
- """
- Update the line graph with new data.
- Args:
- frame_number (int): The current frame number.
- total_counts (int): The total counts to plot.
- """
- # Update line graph data
- x_data = self.line.get_xdata()
- y_data = self.line.get_ydata()
- x_data = np.append(x_data, float(frame_number))
- y_data = np.append(y_data, float(total_counts))
- self.line.set_data(x_data, y_data)
- self.ax.relim()
- self.ax.autoscale_view()
- self.canvas.draw()
- im0 = np.array(self.canvas.renderer.buffer_rgba())
- self.write_and_display(im0)
- def update_multiple_lines(self, counts_dict, labels_list, frame_number):
- """
- Update the line graph with multiple classes.
- Args:
- counts_dict (int): Dictionary include each class counts.
- labels_list (int): list include each classes names.
- frame_number (int): The current frame number.
- """
- warnings.warn("Display is not supported for multiple lines, output will be stored normally!")
- for obj in labels_list:
- if obj not in self.lines:
- (line,) = self.ax.plot([], [], label=obj, marker="o", markersize=self.points_width)
- self.lines[obj] = line
- x_data = self.lines[obj].get_xdata()
- y_data = self.lines[obj].get_ydata()
- # Remove the initial point if the number of points exceeds max_points
- if len(x_data) >= self.max_points:
- x_data = np.delete(x_data, 0)
- y_data = np.delete(y_data, 0)
- x_data = np.append(x_data, float(frame_number)) # Ensure frame_number is converted to float
- y_data = np.append(y_data, float(counts_dict.get(obj, 0))) # Ensure total_count is converted to float
- self.lines[obj].set_data(x_data, y_data)
- self.ax.relim()
- self.ax.autoscale_view()
- self.ax.legend()
- self.canvas.draw()
- im0 = np.array(self.canvas.renderer.buffer_rgba())
- self.view_img = False # for multiple line view_img not supported yet, coming soon!
- self.write_and_display(im0)
- def write_and_display(self, im0):
- """
- Write and display the line graph
- Args:
- im0 (ndarray): Image for processing
- """
- im0 = cv2.cvtColor(im0[:, :, :3], cv2.COLOR_RGBA2BGR)
- cv2.imshow(self.title, im0) if self.view_img else None
- self.writer.write(im0) if self.save_img else None
- def update_bar(self, count_dict):
- """
- Update the bar graph with new data.
- Args:
- count_dict (dict): Dictionary containing the count data to plot.
- """
- # Update bar graph data
- self.ax.clear()
- self.ax.set_facecolor(self.bg_color)
- labels = list(count_dict.keys())
- counts = list(count_dict.values())
- # Map labels to colors
- for label in labels:
- if label not in self.color_mapping:
- self.color_mapping[label] = next(self.color_cycle)
- colors = [self.color_mapping[label] for label in labels]
- bars = self.ax.bar(labels, counts, color=colors)
- for bar, count in zip(bars, counts):
- self.ax.text(
- bar.get_x() + bar.get_width() / 2,
- bar.get_height(),
- str(count),
- ha="center",
- va="bottom",
- color=self.fg_color,
- )
- # Display and save the updated graph
- canvas = FigureCanvas(self.fig)
- canvas.draw()
- buf = canvas.buffer_rgba()
- im0 = np.asarray(buf)
- self.write_and_display(im0)
- def update_pie(self, classes_dict):
- """
- Update the pie chart with new data.
- Args:
- classes_dict (dict): Dictionary containing the class data to plot.
- """
- # Update pie chart data
- labels = list(classes_dict.keys())
- sizes = list(classes_dict.values())
- total = sum(sizes)
- percentages = [size / total * 100 for size in sizes]
- start_angle = 90
- self.ax.clear()
- # Create pie chart without labels inside the slices
- wedges, autotexts = self.ax.pie(sizes, autopct=None, startangle=start_angle, textprops={"color": self.fg_color})
- # Construct legend labels with percentages
- legend_labels = [f"{label} ({percentage:.1f}%)" for label, percentage in zip(labels, percentages)]
- self.ax.legend(wedges, legend_labels, title="Classes", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1))
- # Adjust layout to fit the legend
- self.fig.tight_layout()
- self.fig.subplots_adjust(left=0.1, right=0.75)
- # Display and save the updated chart
- im0 = self.fig.canvas.draw()
- im0 = np.array(self.fig.canvas.renderer.buffer_rgba())
- self.write_and_display(im0)
- if __name__ == "__main__":
- Analytics("line", writer=None, im0_shape=None)
|