123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import cv2
- from ultralytics.utils.checks import check_imshow
- from ultralytics.utils.plotting import Annotator
- class AIGym:
- """A class to manage the gym steps of people in a real-time video stream based on their poses."""
- def __init__(
- self,
- kpts_to_check,
- line_thickness=2,
- view_img=False,
- pose_up_angle=145.0,
- pose_down_angle=90.0,
- pose_type="pullup",
- ):
- """
- Initializes the AIGym class with the specified parameters.
- Args:
- kpts_to_check (list): Indices of keypoints to check.
- line_thickness (int, optional): Thickness of the lines drawn. Defaults to 2.
- view_img (bool, optional): Flag to display the image. Defaults to False.
- pose_up_angle (float, optional): Angle threshold for the 'up' pose. Defaults to 145.0.
- pose_down_angle (float, optional): Angle threshold for the 'down' pose. Defaults to 90.0.
- pose_type (str, optional): Type of pose to detect ('pullup', 'pushup', 'abworkout'). Defaults to "pullup".
- """
- # Image and line thickness
- self.im0 = None
- self.tf = line_thickness
- # Keypoints and count information
- self.keypoints = None
- self.poseup_angle = pose_up_angle
- self.posedown_angle = pose_down_angle
- self.threshold = 0.001
- # Store stage, count and angle information
- self.angle = None
- self.count = None
- self.stage = None
- self.pose_type = pose_type
- self.kpts_to_check = kpts_to_check
- # Visual Information
- self.view_img = view_img
- self.annotator = None
- # Check if environment supports imshow
- self.env_check = check_imshow(warn=True)
- self.count = []
- self.angle = []
- self.stage = []
- def start_counting(self, im0, results):
- """
- Function used to count the gym steps.
- Args:
- im0 (ndarray): Current frame from the video stream.
- results (list): Pose estimation data.
- """
- self.im0 = im0
- if not len(results[0]):
- return self.im0
- if len(results[0]) > len(self.count):
- new_human = len(results[0]) - len(self.count)
- self.count += [0] * new_human
- self.angle += [0] * new_human
- self.stage += ["-"] * new_human
- self.keypoints = results[0].keypoints.data
- self.annotator = Annotator(im0, line_width=self.tf)
- for ind, k in enumerate(reversed(self.keypoints)):
- # Estimate angle and draw specific points based on pose type
- if self.pose_type in {"pushup", "pullup", "abworkout", "squat"}:
- self.angle[ind] = self.annotator.estimate_pose_angle(
- k[int(self.kpts_to_check[0])].cpu(),
- k[int(self.kpts_to_check[1])].cpu(),
- k[int(self.kpts_to_check[2])].cpu(),
- )
- self.im0 = self.annotator.draw_specific_points(k, self.kpts_to_check, shape=(640, 640), radius=10)
- # Check and update pose stages and counts based on angle
- if self.pose_type in {"abworkout", "pullup"}:
- if self.angle[ind] > self.poseup_angle:
- self.stage[ind] = "down"
- if self.angle[ind] < self.posedown_angle and self.stage[ind] == "down":
- self.stage[ind] = "up"
- self.count[ind] += 1
- elif self.pose_type in {"pushup", "squat"}:
- if self.angle[ind] > self.poseup_angle:
- self.stage[ind] = "up"
- if self.angle[ind] < self.posedown_angle and self.stage[ind] == "up":
- self.stage[ind] = "down"
- self.count[ind] += 1
- self.annotator.plot_angle_and_count_and_stage(
- angle_text=self.angle[ind],
- count_text=self.count[ind],
- stage_text=self.stage[ind],
- center_kpt=k[int(self.kpts_to_check[1])],
- )
- # Draw keypoints
- self.annotator.kpts(k, shape=(640, 640), radius=1, kpt_line=True)
- # Display the image if environment supports it and view_img is True
- if self.env_check and self.view_img:
- cv2.imshow("Ultralytics YOLOv8 AI GYM", self.im0)
- if cv2.waitKey(1) & 0xFF == ord("q"):
- return
- return self.im0
- if __name__ == "__main__":
- kpts_to_check = [0, 1, 2] # example keypoints
- aigym = AIGym(kpts_to_check)
|