123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # All rights reserved.
- # This source code is licensed under the license found in the
- # LICENSE file in the root directory of this source tree.
- from functools import partial
- import torch
- from ultralytics.utils.downloads import attempt_download_asset
- from .modules.decoders import MaskDecoder
- from .modules.encoders import ImageEncoderViT, PromptEncoder
- from .modules.sam import Sam
- from .modules.tiny_encoder import TinyViT
- from .modules.transformer import TwoWayTransformer
- def build_sam_vit_h(checkpoint=None):
- """Build and return a Segment Anything Model (SAM) h-size model."""
- return _build_sam(
- encoder_embed_dim=1280,
- encoder_depth=32,
- encoder_num_heads=16,
- encoder_global_attn_indexes=[7, 15, 23, 31],
- checkpoint=checkpoint,
- )
- def build_sam_vit_l(checkpoint=None):
- """Build and return a Segment Anything Model (SAM) l-size model."""
- return _build_sam(
- encoder_embed_dim=1024,
- encoder_depth=24,
- encoder_num_heads=16,
- encoder_global_attn_indexes=[5, 11, 17, 23],
- checkpoint=checkpoint,
- )
- def build_sam_vit_b(checkpoint=None):
- """Build and return a Segment Anything Model (SAM) b-size model."""
- return _build_sam(
- encoder_embed_dim=768,
- encoder_depth=12,
- encoder_num_heads=12,
- encoder_global_attn_indexes=[2, 5, 8, 11],
- checkpoint=checkpoint,
- )
- def build_mobile_sam(checkpoint=None):
- """Build and return Mobile Segment Anything Model (Mobile-SAM)."""
- return _build_sam(
- encoder_embed_dim=[64, 128, 160, 320],
- encoder_depth=[2, 2, 6, 2],
- encoder_num_heads=[2, 4, 5, 10],
- encoder_global_attn_indexes=None,
- mobile_sam=True,
- checkpoint=checkpoint,
- )
- def _build_sam(
- encoder_embed_dim, encoder_depth, encoder_num_heads, encoder_global_attn_indexes, checkpoint=None, mobile_sam=False
- ):
- """Builds the selected SAM model architecture."""
- prompt_embed_dim = 256
- image_size = 1024
- vit_patch_size = 16
- image_embedding_size = image_size // vit_patch_size
- image_encoder = (
- TinyViT(
- img_size=1024,
- in_chans=3,
- num_classes=1000,
- embed_dims=encoder_embed_dim,
- depths=encoder_depth,
- num_heads=encoder_num_heads,
- window_sizes=[7, 7, 14, 7],
- mlp_ratio=4.0,
- drop_rate=0.0,
- drop_path_rate=0.0,
- use_checkpoint=False,
- mbconv_expand_ratio=4.0,
- local_conv_size=3,
- layer_lr_decay=0.8,
- )
- if mobile_sam
- else ImageEncoderViT(
- depth=encoder_depth,
- embed_dim=encoder_embed_dim,
- img_size=image_size,
- mlp_ratio=4,
- norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
- num_heads=encoder_num_heads,
- patch_size=vit_patch_size,
- qkv_bias=True,
- use_rel_pos=True,
- global_attn_indexes=encoder_global_attn_indexes,
- window_size=14,
- out_chans=prompt_embed_dim,
- )
- )
- sam = Sam(
- image_encoder=image_encoder,
- prompt_encoder=PromptEncoder(
- embed_dim=prompt_embed_dim,
- image_embedding_size=(image_embedding_size, image_embedding_size),
- input_image_size=(image_size, image_size),
- mask_in_chans=16,
- ),
- mask_decoder=MaskDecoder(
- num_multimask_outputs=3,
- transformer=TwoWayTransformer(
- depth=2,
- embedding_dim=prompt_embed_dim,
- mlp_dim=2048,
- num_heads=8,
- ),
- transformer_dim=prompt_embed_dim,
- iou_head_depth=3,
- iou_head_hidden_dim=256,
- ),
- pixel_mean=[123.675, 116.28, 103.53],
- pixel_std=[58.395, 57.12, 57.375],
- )
- if checkpoint is not None:
- checkpoint = attempt_download_asset(checkpoint)
- with open(checkpoint, "rb") as f:
- state_dict = torch.load(f)
- sam.load_state_dict(state_dict)
- sam.eval()
- # sam.load_state_dict(torch.load(checkpoint), strict=True)
- # sam.eval()
- return sam
- sam_model_map = {
- "sam_h.pt": build_sam_vit_h,
- "sam_l.pt": build_sam_vit_l,
- "sam_b.pt": build_sam_vit_b,
- "mobile_sam.pt": build_mobile_sam,
- }
- def build_sam(ckpt="sam_b.pt"):
- """Build a SAM model specified by ckpt."""
- model_builder = None
- ckpt = str(ckpt) # to allow Path ckpt types
- for k in sam_model_map.keys():
- if ckpt.endswith(k):
- model_builder = sam_model_map.get(k)
- if not model_builder:
- raise FileNotFoundError(f"{ckpt} is not a supported SAM model. Available models are: \n {sam_model_map.keys()}")
- return model_builder(ckpt)
|