12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import torch
- def adjust_bboxes_to_image_border(boxes, image_shape, threshold=20):
- """
- Adjust bounding boxes to stick to image border if they are within a certain threshold.
- Args:
- boxes (torch.Tensor): (n, 4)
- image_shape (tuple): (height, width)
- threshold (int): pixel threshold
- Returns:
- adjusted_boxes (torch.Tensor): adjusted bounding boxes
- """
- # Image dimensions
- h, w = image_shape
- # Adjust boxes
- boxes[boxes[:, 0] < threshold, 0] = 0 # x1
- boxes[boxes[:, 1] < threshold, 1] = 0 # y1
- boxes[boxes[:, 2] > w - threshold, 2] = w # x2
- boxes[boxes[:, 3] > h - threshold, 3] = h # y2
- return boxes
- def bbox_iou(box1, boxes, iou_thres=0.9, image_shape=(640, 640), raw_output=False):
- """
- Compute the Intersection-Over-Union of a bounding box with respect to an array of other bounding boxes.
- Args:
- box1 (torch.Tensor): (4, )
- boxes (torch.Tensor): (n, 4)
- iou_thres (float): IoU threshold
- image_shape (tuple): (height, width)
- raw_output (bool): If True, return the raw IoU values instead of the indices
- Returns:
- high_iou_indices (torch.Tensor): Indices of boxes with IoU > thres
- """
- boxes = adjust_bboxes_to_image_border(boxes, image_shape)
- # Obtain coordinates for intersections
- x1 = torch.max(box1[0], boxes[:, 0])
- y1 = torch.max(box1[1], boxes[:, 1])
- x2 = torch.min(box1[2], boxes[:, 2])
- y2 = torch.min(box1[3], boxes[:, 3])
- # Compute the area of intersection
- intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)
- # Compute the area of both individual boxes
- box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
- box2_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
- # Compute the area of union
- union = box1_area + box2_area - intersection
- # Compute the IoU
- iou = intersection / union # Should be shape (n, )
- if raw_output:
- return 0 if iou.numel() == 0 else iou
- # return indices of boxes with IoU > thres
- return torch.nonzero(iou > iou_thres).flatten()
|