123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- """
- Check a model's accuracy on a test or val split of a dataset.
- Usage:
- $ yolo mode=val model=yolov8n.pt data=coco8.yaml imgsz=640
- Usage - formats:
- $ yolo mode=val model=yolov8n.pt # PyTorch
- yolov8n.torchscript # TorchScript
- yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
- yolov8n_openvino_model # OpenVINO
- yolov8n.engine # TensorRT
- yolov8n.mlpackage # CoreML (macOS-only)
- yolov8n_saved_model # TensorFlow SavedModel
- yolov8n.pb # TensorFlow GraphDef
- yolov8n.tflite # TensorFlow Lite
- yolov8n_edgetpu.tflite # TensorFlow Edge TPU
- yolov8n_paddle_model # PaddlePaddle
- yolov8n_ncnn_model # NCNN
- """
- import json
- import time
- from pathlib import Path
- import numpy as np
- import torch
- from ultralytics.cfg import get_cfg, get_save_dir
- from ultralytics.data.utils import check_cls_dataset, check_det_dataset
- from ultralytics.nn.autobackend import AutoBackend
- from ultralytics.utils import LOGGER, TQDM, callbacks, colorstr, emojis
- from ultralytics.utils.checks import check_imgsz
- from ultralytics.utils.ops import Profile
- from ultralytics.utils.torch_utils import de_parallel, select_device, smart_inference_mode
- class BaseValidator:
- """
- BaseValidator.
- A base class for creating validators.
- Attributes:
- args (SimpleNamespace): Configuration for the validator.
- dataloader (DataLoader): Dataloader to use for validation.
- pbar (tqdm): Progress bar to update during validation.
- model (nn.Module): Model to validate.
- data (dict): Data dictionary.
- device (torch.device): Device to use for validation.
- batch_i (int): Current batch index.
- training (bool): Whether the model is in training mode.
- names (dict): Class names.
- seen: Records the number of images seen so far during validation.
- stats: Placeholder for statistics during validation.
- confusion_matrix: Placeholder for a confusion matrix.
- nc: Number of classes.
- iouv: (torch.Tensor): IoU thresholds from 0.50 to 0.95 in spaces of 0.05.
- jdict (dict): Dictionary to store JSON validation results.
- speed (dict): Dictionary with keys 'preprocess', 'inference', 'loss', 'postprocess' and their respective
- batch processing times in milliseconds.
- save_dir (Path): Directory to save results.
- plots (dict): Dictionary to store plots for visualization.
- callbacks (dict): Dictionary to store various callback functions.
- """
- def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
- """
- Initializes a BaseValidator instance.
- Args:
- dataloader (torch.utils.data.DataLoader): Dataloader to be used for validation.
- save_dir (Path, optional): Directory to save results.
- pbar (tqdm.tqdm): Progress bar for displaying progress.
- args (SimpleNamespace): Configuration for the validator.
- _callbacks (dict): Dictionary to store various callback functions.
- """
- self.args = get_cfg(overrides=args)
- self.dataloader = dataloader
- self.pbar = pbar
- self.stride = None
- self.data = None
- self.device = None
- self.batch_i = None
- self.training = True
- self.names = None
- self.seen = None
- self.stats = None
- self.confusion_matrix = None
- self.nc = None
- self.iouv = None
- self.jdict = None
- self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}
- self.save_dir = save_dir or get_save_dir(self.args)
- (self.save_dir / "labels" if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
- if self.args.conf is None:
- self.args.conf = 0.001 # default conf=0.001
- self.args.imgsz = check_imgsz(self.args.imgsz, max_dim=1)
- self.plots = {}
- self.callbacks = _callbacks or callbacks.get_default_callbacks()
- @smart_inference_mode()
- def __call__(self, trainer=None, model=None):
- """Supports validation of a pre-trained model if passed or a model being trained if trainer is passed (trainer
- gets priority).
- """
- self.training = trainer is not None
- augment = self.args.augment and (not self.training)
- if self.training:
- self.device = trainer.device
- self.data = trainer.data
- self.args.half = self.device.type != "cpu" # force FP16 val during training
- # self.args.half = False # force FP16 val during training
- model = trainer.ema.ema or trainer.model
- model = model.half() if self.args.half else model.float()
- # self.model = model
- self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device)
- self.args.plots &= trainer.stopper.possible_stop or (trainer.epoch == trainer.epochs - 1)
- model.eval()
- else:
- callbacks.add_integration_callbacks(self)
- model = AutoBackend(
- weights=model or self.args.model,
- device=select_device(self.args.device, self.args.batch),
- dnn=self.args.dnn,
- data=self.args.data,
- fp16=self.args.half,
- )
- # self.model = model
- self.device = model.device # update device
- self.args.half = model.fp16 # update half
- stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
- imgsz = check_imgsz(self.args.imgsz, stride=stride)
- if engine:
- self.args.batch = model.batch_size
- elif not pt and not jit:
- self.args.batch = 1 # export.py models default to batch-size 1
- LOGGER.info(f"Forcing batch=1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models")
- if str(self.args.data).split(".")[-1] in {"yaml", "yml"}:
- self.data = check_det_dataset(self.args.data, self.args.is_train_on_platform)
- elif self.args.task == "classify":
- self.data = check_cls_dataset(self.args.data, split=self.args.split)
- else:
- raise FileNotFoundError(emojis(f"Dataset '{self.args.data}' for task={self.args.task} not found ❌"))
- if self.device.type in {"cpu", "mps"}:
- self.args.workers = 0 # faster CPU val as time dominated by inference, not dataloading
- if not pt:
- self.args.rect = False
- self.stride = model.stride # used in get_dataloader() for padding
- self.dataloader = self.dataloader or self.get_dataloader(self.data.get(self.args.split), self.args.batch)
- model.eval()
- model.warmup(imgsz=(1 if pt else self.args.batch, 3, imgsz, imgsz)) # warmup
- self.run_callbacks("on_val_start")
- dt = (
- Profile(device=self.device),
- Profile(device=self.device),
- Profile(device=self.device),
- Profile(device=self.device),
- )
- bar = TQDM(self.dataloader, desc=self.get_desc(), total=len(self.dataloader))
- self.init_metrics(de_parallel(model))
- self.jdict = [] # empty before each val
- for batch_i, batch in enumerate(bar):
- self.run_callbacks("on_val_batch_start")
- self.batch_i = batch_i
- # Preprocess
- with dt[0]:
- batch = self.preprocess(batch)
- # Inference
- with dt[1]:
- preds = model(batch["img"], augment=augment)
- # Loss
- with dt[2]:
- if self.training:
- self.loss += model.loss(batch, preds)[1]
- # Postprocess
- with dt[3]:
- preds = self.postprocess(preds)
- self.update_metrics(preds, batch)
- if self.args.plots and batch_i < 3:
- self.plot_val_samples(batch, batch_i)
- self.plot_predictions(batch, preds, batch_i)
- self.run_callbacks("on_val_batch_end")
- stats = self.get_stats()
- self.check_stats(stats)
- self.speed = dict(zip(self.speed.keys(), (x.t / len(self.dataloader.dataset) * 1e3 for x in dt)))
- self.finalize_metrics()
- self.print_results()
- self.run_callbacks("on_val_end")
- if self.training:
- model.float()
- results = {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix="val")}
- return {k: round(float(v), 5) for k, v in results.items()} # return results as 5 decimal place floats
- else:
- LOGGER.info(
- "Speed: %.1fms preprocess, %.1fms inference, %.1fms loss, %.1fms postprocess per image"
- % tuple(self.speed.values())
- )
- if self.args.save_json and self.jdict:
- with open(str(self.save_dir / "predictions.json"), "w") as f:
- LOGGER.info(f"Saving {f.name}...")
- json.dump(self.jdict, f) # flatten and save
- stats = self.eval_json(stats) # update stats
- if self.args.plots or self.args.save_json:
- LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}")
- return stats
- def match_predictions(self, pred_classes, true_classes, iou, use_scipy=False):
- """
- Matches predictions to ground truth objects (pred_classes, true_classes) using IoU.
- Args:
- pred_classes (torch.Tensor): Predicted class indices of shape(N,).
- true_classes (torch.Tensor): Target class indices of shape(M,).
- iou (torch.Tensor): An NxM tensor containing the pairwise IoU values for predictions and ground of truth
- use_scipy (bool): Whether to use scipy for matching (more precise).
- Returns:
- (torch.Tensor): Correct tensor of shape(N,10) for 10 IoU thresholds.
- """
- # Dx10 matrix, where D - detections, 10 - IoU thresholds
- correct = np.zeros((pred_classes.shape[0], self.iouv.shape[0])).astype(bool)
- # LxD matrix where L - labels (rows), D - detections (columns)
- correct_class = true_classes[:, None] == pred_classes
- iou = iou * correct_class # zero out the wrong classes
- iou = iou.cpu().numpy()
- for i, threshold in enumerate(self.iouv.cpu().tolist()):
- if use_scipy:
- # WARNING: known issue that reduces mAP in https://github.com/ultralytics/ultralytics/pull/4708
- import scipy # scope import to avoid importing for all commands
- cost_matrix = iou * (iou >= threshold)
- if cost_matrix.any():
- labels_idx, detections_idx = scipy.optimize.linear_sum_assignment(cost_matrix, maximize=True)
- valid = cost_matrix[labels_idx, detections_idx] > 0
- if valid.any():
- correct[detections_idx[valid], i] = True
- else:
- matches = np.nonzero(iou >= threshold) # IoU > threshold and classes match
- matches = np.array(matches).T
- if matches.shape[0]:
- if matches.shape[0] > 1:
- matches = matches[iou[matches[:, 0], matches[:, 1]].argsort()[::-1]]
- matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
- # matches = matches[matches[:, 2].argsort()[::-1]]
- matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
- correct[matches[:, 1].astype(int), i] = True
- return torch.tensor(correct, dtype=torch.bool, device=pred_classes.device)
- def add_callback(self, event: str, callback):
- """Appends the given callback."""
- self.callbacks[event].append(callback)
- def run_callbacks(self, event: str):
- """Runs all callbacks associated with a specified event."""
- for callback in self.callbacks.get(event, []):
- callback(self)
- def get_dataloader(self, dataset_path, batch_size):
- """Get data loader from dataset path and batch size."""
- raise NotImplementedError("get_dataloader function not implemented for this validator")
- def build_dataset(self, img_path):
- """Build dataset."""
- raise NotImplementedError("build_dataset function not implemented in validator")
- def preprocess(self, batch):
- """Preprocesses an input batch."""
- return batch
- def postprocess(self, preds):
- """Describes and summarizes the purpose of 'postprocess()' but no details mentioned."""
- return preds
- def init_metrics(self, model):
- """Initialize performance metrics for the YOLO model."""
- pass
- def update_metrics(self, preds, batch):
- """Updates metrics based on predictions and batch."""
- pass
- def finalize_metrics(self, *args, **kwargs):
- """Finalizes and returns all metrics."""
- pass
- def get_stats(self):
- """Returns statistics about the model's performance."""
- return {}
- def check_stats(self, stats):
- """Checks statistics."""
- pass
- def print_results(self):
- """Prints the results of the model's predictions."""
- pass
- def get_desc(self):
- """Get description of the YOLO model."""
- pass
- @property
- def metric_keys(self):
- """Returns the metric keys used in YOLO training/validation."""
- return []
- def on_plot(self, name, data=None):
- """Registers plots (e.g. to be consumed in callbacks)"""
- self.plots[Path(name)] = {"data": data, "timestamp": time.time()}
- # TODO: may need to put these following functions into callback
- def plot_val_samples(self, batch, ni):
- """Plots validation samples during training."""
- pass
- def plot_predictions(self, batch, preds, ni):
- """Plots YOLO model predictions on batch images."""
- pass
- def pred_to_json(self, preds, batch):
- """Convert predictions to JSON format."""
- pass
- def eval_json(self, stats):
- """Evaluate and return JSON format of prediction statistics."""
- pass
|