build.py 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209
  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. import os
  3. import random
  4. from pathlib import Path
  5. import numpy as np
  6. import torch
  7. from PIL import Image
  8. from torch.utils.data import dataloader, distributed
  9. from ultralytics.data.dataset import GroundingDataset, YOLODataset, YOLOMultiModalDataset
  10. from ultralytics.data.loaders import (
  11. LOADERS,
  12. LoadImagesAndVideos,
  13. LoadPilAndNumpy,
  14. LoadScreenshots,
  15. LoadStreams,
  16. LoadTensor,
  17. SourceTypes,
  18. autocast_list,
  19. )
  20. from ultralytics.data.utils import IMG_FORMATS, PIN_MEMORY, VID_FORMATS
  21. from ultralytics.utils import RANK, colorstr
  22. from ultralytics.utils.checks import check_file
  23. class InfiniteDataLoader(dataloader.DataLoader):
  24. """
  25. Dataloader that reuses workers.
  26. Uses same syntax as vanilla DataLoader.
  27. """
  28. def __init__(self, *args, **kwargs):
  29. """Dataloader that infinitely recycles workers, inherits from DataLoader."""
  30. super().__init__(*args, **kwargs)
  31. object.__setattr__(self, "batch_sampler", _RepeatSampler(self.batch_sampler))
  32. self.iterator = super().__iter__()
  33. def __len__(self):
  34. """Returns the length of the batch sampler's sampler."""
  35. return len(self.batch_sampler.sampler)
  36. def __iter__(self):
  37. """Creates a sampler that repeats indefinitely."""
  38. for _ in range(len(self)):
  39. yield next(self.iterator)
  40. def reset(self):
  41. """
  42. Reset iterator.
  43. This is useful when we want to modify settings of dataset while training.
  44. """
  45. self.iterator = self._get_iterator()
  46. class _RepeatSampler:
  47. """
  48. Sampler that repeats forever.
  49. Args:
  50. sampler (Dataset.sampler): The sampler to repeat.
  51. """
  52. def __init__(self, sampler):
  53. """Initializes an object that repeats a given sampler indefinitely."""
  54. self.sampler = sampler
  55. def __iter__(self):
  56. """Iterates over the 'sampler' and yields its contents."""
  57. while True:
  58. yield from iter(self.sampler)
  59. def seed_worker(worker_id): # noqa
  60. """Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader."""
  61. worker_seed = torch.initial_seed() % 2**32
  62. np.random.seed(worker_seed)
  63. random.seed(worker_seed)
  64. def build_yolo_dataset(cfg, img_path, batch, data, mode="train", rect=False, stride=32, multi_modal=False):
  65. """Build YOLO Dataset."""
  66. dataset = YOLOMultiModalDataset if multi_modal else YOLODataset
  67. return dataset(
  68. img_path=img_path,
  69. is_train_on_platform=cfg.is_train_on_platform,
  70. data=data,
  71. imgsz=cfg.imgsz,
  72. batch_size=batch,
  73. augment=mode == "train", # augmentation
  74. hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
  75. rect=cfg.rect or rect, # rectangular batches
  76. cache=cfg.cache or None,
  77. single_cls=cfg.single_cls or False,
  78. stride=int(stride),
  79. pad=0.0 if mode == "train" else 0.5,
  80. prefix=colorstr(f"{mode}: "),
  81. task=cfg.task,
  82. classes=cfg.classes,
  83. fraction=cfg.fraction if mode == "train" else 1.0,
  84. )
  85. def build_grounding(cfg, img_path, json_file, batch, mode="train", rect=False, stride=32):
  86. """Build YOLO Dataset."""
  87. return GroundingDataset(
  88. img_path=img_path,
  89. json_file=json_file,
  90. imgsz=cfg.imgsz,
  91. batch_size=batch,
  92. augment=mode == "train", # augmentation
  93. hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
  94. rect=cfg.rect or rect, # rectangular batches
  95. cache=cfg.cache or None,
  96. single_cls=cfg.single_cls or False,
  97. stride=int(stride),
  98. pad=0.0 if mode == "train" else 0.5,
  99. prefix=colorstr(f"{mode}: "),
  100. task=cfg.task,
  101. classes=cfg.classes,
  102. fraction=cfg.fraction if mode == "train" else 1.0,
  103. )
  104. def build_dataloader(dataset, batch, workers, shuffle=True, rank=-1):
  105. """Return an InfiniteDataLoader or DataLoader for training or validation set."""
  106. batch = min(batch, len(dataset))
  107. nd = torch.cuda.device_count() # number of CUDA devices
  108. nw = min(os.cpu_count() // max(nd, 1), workers) # number of workers
  109. sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
  110. generator = torch.Generator()
  111. generator.manual_seed(6148914691236517205 + RANK)
  112. return InfiniteDataLoader(
  113. dataset=dataset,
  114. batch_size=batch,
  115. shuffle=shuffle and sampler is None,
  116. num_workers=nw,
  117. sampler=sampler,
  118. pin_memory=PIN_MEMORY,
  119. collate_fn=getattr(dataset, "collate_fn", None),
  120. worker_init_fn=seed_worker,
  121. generator=generator,
  122. )
  123. def check_source(source):
  124. """Check source type and return corresponding flag values."""
  125. webcam, screenshot, from_img, in_memory, tensor = False, False, False, False, False
  126. if isinstance(source, (str, int, Path)): # int for local usb camera
  127. source = str(source)
  128. is_file = Path(source).suffix[1:] in (IMG_FORMATS | VID_FORMATS)
  129. is_url = source.lower().startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://"))
  130. webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
  131. screenshot = source.lower() == "screen"
  132. if is_url and is_file:
  133. source = check_file(source) # download
  134. elif isinstance(source, LOADERS):
  135. in_memory = True
  136. elif isinstance(source, (list, tuple)):
  137. source = autocast_list(source) # convert all list elements to PIL or np arrays
  138. from_img = True
  139. elif isinstance(source, (Image.Image, np.ndarray)):
  140. from_img = True
  141. elif isinstance(source, torch.Tensor):
  142. tensor = True
  143. else:
  144. raise TypeError("Unsupported image type. For supported types see https://docs.ultralytics.com/modes/predict")
  145. return source, webcam, screenshot, from_img, in_memory, tensor
  146. def load_inference_source(source=None, batch=1, vid_stride=1, buffer=False):
  147. """
  148. Loads an inference source for object detection and applies necessary transformations.
  149. Args:
  150. source (str, Path, Tensor, PIL.Image, np.ndarray): The input source for inference.
  151. batch (int, optional): Batch size for dataloaders. Default is 1.
  152. vid_stride (int, optional): The frame interval for video sources. Default is 1.
  153. buffer (bool, optional): Determined whether stream frames will be buffered. Default is False.
  154. Returns:
  155. dataset (Dataset): A dataset object for the specified input source.
  156. """
  157. source, stream, screenshot, from_img, in_memory, tensor = check_source(source)
  158. source_type = source.source_type if in_memory else SourceTypes(stream, screenshot, from_img, tensor)
  159. # Dataloader
  160. if tensor:
  161. dataset = LoadTensor(source)
  162. elif in_memory:
  163. dataset = source
  164. elif stream:
  165. dataset = LoadStreams(source, vid_stride=vid_stride, buffer=buffer)
  166. elif screenshot:
  167. dataset = LoadScreenshots(source)
  168. elif from_img:
  169. dataset = LoadPilAndNumpy(source)
  170. else:
  171. dataset = LoadImagesAndVideos(source, batch=batch, vid_stride=vid_stride)
  172. # Attach source types to the dataset
  173. setattr(dataset, "source_type", source_type)
  174. return dataset