123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import os
- import random
- from pathlib import Path
- import numpy as np
- import torch
- from PIL import Image
- from torch.utils.data import dataloader, distributed
- from ultralytics.data.dataset import GroundingDataset, YOLODataset, YOLOMultiModalDataset
- from ultralytics.data.loaders import (
- LOADERS,
- LoadImagesAndVideos,
- LoadPilAndNumpy,
- LoadScreenshots,
- LoadStreams,
- LoadTensor,
- SourceTypes,
- autocast_list,
- )
- from ultralytics.data.utils import IMG_FORMATS, PIN_MEMORY, VID_FORMATS
- from ultralytics.utils import RANK, colorstr
- from ultralytics.utils.checks import check_file
- class InfiniteDataLoader(dataloader.DataLoader):
- """
- Dataloader that reuses workers.
- Uses same syntax as vanilla DataLoader.
- """
- def __init__(self, *args, **kwargs):
- """Dataloader that infinitely recycles workers, inherits from DataLoader."""
- super().__init__(*args, **kwargs)
- object.__setattr__(self, "batch_sampler", _RepeatSampler(self.batch_sampler))
- self.iterator = super().__iter__()
- def __len__(self):
- """Returns the length of the batch sampler's sampler."""
- return len(self.batch_sampler.sampler)
- def __iter__(self):
- """Creates a sampler that repeats indefinitely."""
- for _ in range(len(self)):
- yield next(self.iterator)
- def reset(self):
- """
- Reset iterator.
- This is useful when we want to modify settings of dataset while training.
- """
- self.iterator = self._get_iterator()
- class _RepeatSampler:
- """
- Sampler that repeats forever.
- Args:
- sampler (Dataset.sampler): The sampler to repeat.
- """
- def __init__(self, sampler):
- """Initializes an object that repeats a given sampler indefinitely."""
- self.sampler = sampler
- def __iter__(self):
- """Iterates over the 'sampler' and yields its contents."""
- while True:
- yield from iter(self.sampler)
- def seed_worker(worker_id): # noqa
- """Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader."""
- worker_seed = torch.initial_seed() % 2**32
- np.random.seed(worker_seed)
- random.seed(worker_seed)
- def build_yolo_dataset(cfg, img_path, batch, data, mode="train", rect=False, stride=32, multi_modal=False):
- """Build YOLO Dataset."""
- dataset = YOLOMultiModalDataset if multi_modal else YOLODataset
- return dataset(
- img_path=img_path,
- is_train_on_platform=cfg.is_train_on_platform,
- data=data,
- imgsz=cfg.imgsz,
- batch_size=batch,
- augment=mode == "train", # augmentation
- hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
- rect=cfg.rect or rect, # rectangular batches
- cache=cfg.cache or None,
- single_cls=cfg.single_cls or False,
- stride=int(stride),
- pad=0.0 if mode == "train" else 0.5,
- prefix=colorstr(f"{mode}: "),
- task=cfg.task,
- classes=cfg.classes,
- fraction=cfg.fraction if mode == "train" else 1.0,
- )
- def build_grounding(cfg, img_path, json_file, batch, mode="train", rect=False, stride=32):
- """Build YOLO Dataset."""
- return GroundingDataset(
- img_path=img_path,
- json_file=json_file,
- imgsz=cfg.imgsz,
- batch_size=batch,
- augment=mode == "train", # augmentation
- hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
- rect=cfg.rect or rect, # rectangular batches
- cache=cfg.cache or None,
- single_cls=cfg.single_cls or False,
- stride=int(stride),
- pad=0.0 if mode == "train" else 0.5,
- prefix=colorstr(f"{mode}: "),
- task=cfg.task,
- classes=cfg.classes,
- fraction=cfg.fraction if mode == "train" else 1.0,
- )
- def build_dataloader(dataset, batch, workers, shuffle=True, rank=-1):
- """Return an InfiniteDataLoader or DataLoader for training or validation set."""
- batch = min(batch, len(dataset))
- nd = torch.cuda.device_count() # number of CUDA devices
- nw = min(os.cpu_count() // max(nd, 1), workers) # number of workers
- sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
- generator = torch.Generator()
- generator.manual_seed(6148914691236517205 + RANK)
- return InfiniteDataLoader(
- dataset=dataset,
- batch_size=batch,
- shuffle=shuffle and sampler is None,
- num_workers=nw,
- sampler=sampler,
- pin_memory=PIN_MEMORY,
- collate_fn=getattr(dataset, "collate_fn", None),
- worker_init_fn=seed_worker,
- generator=generator,
- )
- def check_source(source):
- """Check source type and return corresponding flag values."""
- webcam, screenshot, from_img, in_memory, tensor = False, False, False, False, False
- if isinstance(source, (str, int, Path)): # int for local usb camera
- source = str(source)
- is_file = Path(source).suffix[1:] in (IMG_FORMATS | VID_FORMATS)
- is_url = source.lower().startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://"))
- webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
- screenshot = source.lower() == "screen"
- if is_url and is_file:
- source = check_file(source) # download
- elif isinstance(source, LOADERS):
- in_memory = True
- elif isinstance(source, (list, tuple)):
- source = autocast_list(source) # convert all list elements to PIL or np arrays
- from_img = True
- elif isinstance(source, (Image.Image, np.ndarray)):
- from_img = True
- elif isinstance(source, torch.Tensor):
- tensor = True
- else:
- raise TypeError("Unsupported image type. For supported types see https://docs.ultralytics.com/modes/predict")
- return source, webcam, screenshot, from_img, in_memory, tensor
- def load_inference_source(source=None, batch=1, vid_stride=1, buffer=False):
- """
- Loads an inference source for object detection and applies necessary transformations.
- Args:
- source (str, Path, Tensor, PIL.Image, np.ndarray): The input source for inference.
- batch (int, optional): Batch size for dataloaders. Default is 1.
- vid_stride (int, optional): The frame interval for video sources. Default is 1.
- buffer (bool, optional): Determined whether stream frames will be buffered. Default is False.
- Returns:
- dataset (Dataset): A dataset object for the specified input source.
- """
- source, stream, screenshot, from_img, in_memory, tensor = check_source(source)
- source_type = source.source_type if in_memory else SourceTypes(stream, screenshot, from_img, tensor)
- # Dataloader
- if tensor:
- dataset = LoadTensor(source)
- elif in_memory:
- dataset = source
- elif stream:
- dataset = LoadStreams(source, vid_stride=vid_stride, buffer=buffer)
- elif screenshot:
- dataset = LoadScreenshots(source)
- elif from_img:
- dataset = LoadPilAndNumpy(source)
- else:
- dataset = LoadImagesAndVideos(source, batch=batch, vid_stride=vid_stride)
- # Attach source types to the dataset
- setattr(dataset, "source_type", source_type)
- return dataset
|