123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- # Default training settings and hyperparameters for medium-augmentation COCO training
- task: detect # (str) YOLO task, i.e. detect, segment, classify, pose
- mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
- # 添加一个参数判断是否在 VINNO AI平台训练 ,暂时只支持 detect 和 segment
- is_train_on_platform: True # True # False # (bool) 是否在 VINNO AI平台训练
- # Train settings -------------------------------------------------------------------------------------------------------
- model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml
- data: # (str, optional) path to data file, i.e. coco8.yaml
- epochs: 100 # (int) number of epochs to train for
- time: # (float, optional) number of hours to train for, overrides epochs if supplied
- patience: 100 # (int) epochs to wait for no observable improvement for early stopping of training
- batch: 16 # (int) number of images per batch (-1 for AutoBatch)
- imgsz: 640 # (int | list) input images size as int for train and val modes, or list[h,w] for predict and export modes
- save: True # (bool) save train checkpoints and predict results
- save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1)
- cache: False # (bool) True/ram, disk or False. Use cache for data loading
- device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
- workers: 8 # (int) number of worker threads for data loading (per RANK if DDP)
- project: # (str, optional) project name
- name: # (str, optional) experiment name, results saved to 'project/name' directory
- exist_ok: False # (bool) whether to overwrite existing experiment
- pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str)
- optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]
- verbose: True # (bool) whether to print verbose output
- seed: 0 # (int) random seed for reproducibility
- deterministic: True # (bool) whether to enable deterministic mode
- single_cls: False # (bool) train multi-class data as single-class
- rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val'
- cos_lr: False # (bool) use cosine learning rate scheduler
- close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable)
- resume: False # (bool) resume training from last checkpoint
- amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check
- fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set)
- profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers
- freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training
- multi_scale: False # (bool) Whether to use multiscale during training
- # Segmentation
- overlap_mask: True # (bool) masks should overlap during training (segment train only)
- mask_ratio: 4 # (int) mask downsample ratio (segment train only)
- # Classification
- dropout: 0.0 # (float) use dropout regularization (classify train only)
- # Val/Test settings ----------------------------------------------------------------------------------------------------
- val: True # (bool) validate/test during training
- split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train'
- save_json: False # (bool) save results to JSON file
- save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions)
- conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val)
- iou: 0.7 # (float) intersection over union (IoU) threshold for NMS
- max_det: 300 # (int) maximum number of detections per image
- half: False # (bool) use half precision (FP16)
- dnn: False # (bool) use OpenCV DNN for ONNX inference
- plots: True # (bool) save plots and images during train/val
- # Predict settings -----------------------------------------------------------------------------------------------------
- source: # (str, optional) source directory for images or videos
- vid_stride: 1 # (int) video frame-rate stride
- stream_buffer: False # (bool) buffer all streaming frames (True) or return the most recent frame (False)
- visualize: False # (bool) visualize model features
- augment: False # (bool) apply image augmentation to prediction sources
- agnostic_nms: False # (bool) class-agnostic NMS
- classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3]
- retina_masks: False # (bool) use high-resolution segmentation masks
- embed: # (list[int], optional) return feature vectors/embeddings from given layers
- # Visualize settings ---------------------------------------------------------------------------------------------------
- show: False # (bool) show predicted images and videos if environment allows
- save_frames: False # (bool) save predicted individual video frames
- save_txt: False # (bool) save results as .txt file
- save_conf: False # (bool) save results with confidence scores
- save_crop: False # (bool) save cropped images with results
- show_labels: True # (bool) show prediction labels, i.e. 'person'
- show_conf: True # (bool) show prediction confidence, i.e. '0.99'
- show_boxes: True # (bool) show prediction boxes
- line_width: # (int, optional) line width of the bounding boxes. Scaled to image size if None.
- # Export settings ------------------------------------------------------------------------------------------------------
- format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats
- keras: False # (bool) use Kera=s
- optimize: False # (bool) TorchScript: optimize for mobile
- int8: False # (bool) CoreML/TF INT8 quantization
- dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes
- simplify: False # (bool) ONNX: simplify model using `onnxslim`
- opset: # (int, optional) ONNX: opset version
- workspace: 4 # (int) TensorRT: workspace size (GB)
- nms: False # (bool) CoreML: add NMS
- # Hyperparameters ------------------------------------------------------------------------------------------------------
- lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3)
- lrf: 0.01 # (float) final learning rate (lr0 * lrf)
- momentum: 0.937 # (float) SGD momentum/Adam beta1
- weight_decay: 0.0005 # (float) optimizer weight decay 5e-4
- warmup_epochs: 3.0 # (float) warmup epochs (fractions ok)
- warmup_momentum: 0.8 # (float) warmup initial momentum
- warmup_bias_lr: 0.1 # (float) warmup initial bias lr
- box: 7.5 # (float) box loss gain
- cls: 0.5 # (float) cls loss gain (scale with pixels)
- dfl: 1.5 # (float) dfl loss gain
- pose: 12.0 # (float) pose loss gain
- kobj: 1.0 # (float) keypoint obj loss gain
- label_smoothing: 0.0 # (float) label smoothing (fraction)
- nbs: 64 # (int) nominal batch size
- hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction)
- hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction)
- hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction)
- degrees: 0.0 # (float) image rotation (+/- deg)
- translate: 0.1 # (float) image translation (+/- fraction)
- scale: 0.5 # (float) image scale (+/- gain)
- shear: 0.0 # (float) image shear (+/- deg)
- perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001
- flipud: 0.0 # (float) image flip up-down (probability)
- fliplr: 0.5 # (float) image flip left-right (probability)
- bgr: 0.0 # (float) image channel BGR (probability)
- mosaic: 1.0 # (float) image mosaic (probability)
- mixup: 0.0 # (float) image mixup (probability)
- copy_paste: 0.0 # (float) segment copy-paste (probability)
- auto_augment: randaugment # (str) auto augmentation policy for classification (randaugment, autoaugment, augmix)
- erasing: 0.4 # (float) probability of random erasing during classification training (0-0.9), 0 means no erasing, must be less than 1.0.
- crop_fraction: 1.0 # (float) image crop fraction for classification (0.1-1), 1.0 means no crop, must be greater than 0.
- # Custom config.yaml ---------------------------------------------------------------------------------------------------
- cfg: # (str, optional) for overriding defaults.yaml
- # Tracker settings ------------------------------------------------------------------------------------------------------
- tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml]
|