123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- import argparse
- import cv2
- import numpy as np
- from tflite_runtime import interpreter as tflite
- from ultralytics.utils import ASSETS, yaml_load
- from ultralytics.utils.checks import check_yaml
- # Declare as global variables, can be updated based trained model image size
- img_width = 640
- img_height = 640
- class LetterBox:
- def __init__(
- self, new_shape=(img_width, img_height), auto=False, scaleFill=False, scaleup=True, center=True, stride=32
- ):
- """Initializes LetterBox with parameters for reshaping and transforming image while maintaining aspect ratio."""
- self.new_shape = new_shape
- self.auto = auto
- self.scaleFill = scaleFill
- self.scaleup = scaleup
- self.stride = stride
- self.center = center # Put the image in the middle or top-left
- def __call__(self, labels=None, image=None):
- """Return updated labels and image with added border."""
- if labels is None:
- labels = {}
- img = labels.get("img") if image is None else image
- shape = img.shape[:2] # current shape [height, width]
- new_shape = labels.pop("rect_shape", self.new_shape)
- if isinstance(new_shape, int):
- new_shape = (new_shape, new_shape)
- # Scale ratio (new / old)
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
- if not self.scaleup: # only scale down, do not scale up (for better val mAP)
- r = min(r, 1.0)
- # Compute padding
- ratio = r, r # width, height ratios
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
- dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
- if self.auto: # minimum rectangle
- dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding
- elif self.scaleFill: # stretch
- dw, dh = 0.0, 0.0
- new_unpad = (new_shape[1], new_shape[0])
- ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
- if self.center:
- dw /= 2 # divide padding into 2 sides
- dh /= 2
- if shape[::-1] != new_unpad: # resize
- img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
- top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1))
- left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1))
- img = cv2.copyMakeBorder(
- img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)
- ) # add border
- if labels.get("ratio_pad"):
- labels["ratio_pad"] = (labels["ratio_pad"], (left, top)) # for evaluation
- if len(labels):
- labels = self._update_labels(labels, ratio, dw, dh)
- labels["img"] = img
- labels["resized_shape"] = new_shape
- return labels
- else:
- return img
- def _update_labels(self, labels, ratio, padw, padh):
- """Update labels."""
- labels["instances"].convert_bbox(format="xyxy")
- labels["instances"].denormalize(*labels["img"].shape[:2][::-1])
- labels["instances"].scale(*ratio)
- labels["instances"].add_padding(padw, padh)
- return labels
- class Yolov8TFLite:
- def __init__(self, tflite_model, input_image, confidence_thres, iou_thres):
- """
- Initializes an instance of the Yolov8TFLite class.
- Args:
- tflite_model: Path to the TFLite model.
- input_image: Path to the input image.
- confidence_thres: Confidence threshold for filtering detections.
- iou_thres: IoU (Intersection over Union) threshold for non-maximum suppression.
- """
- self.tflite_model = tflite_model
- self.input_image = input_image
- self.confidence_thres = confidence_thres
- self.iou_thres = iou_thres
- # Load the class names from the COCO dataset
- self.classes = yaml_load(check_yaml("coco8.yaml"))["names"]
- # Generate a color palette for the classes
- self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
- def draw_detections(self, img, box, score, class_id):
- """
- Draws bounding boxes and labels on the input image based on the detected objects.
- Args:
- img: The input image to draw detections on.
- box: Detected bounding box.
- score: Corresponding detection score.
- class_id: Class ID for the detected object.
- Returns:
- None
- """
- # Extract the coordinates of the bounding box
- x1, y1, w, h = box
- # Retrieve the color for the class ID
- color = self.color_palette[class_id]
- # Draw the bounding box on the image
- cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
- # Create the label text with class name and score
- label = f"{self.classes[class_id]}: {score:.2f}"
- # Calculate the dimensions of the label text
- (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
- # Calculate the position of the label text
- label_x = x1
- label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
- # Draw a filled rectangle as the background for the label text
- cv2.rectangle(
- img,
- (int(label_x), int(label_y - label_height)),
- (int(label_x + label_width), int(label_y + label_height)),
- color,
- cv2.FILLED,
- )
- # Draw the label text on the image
- cv2.putText(img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
- def preprocess(self):
- """
- Preprocesses the input image before performing inference.
- Returns:
- image_data: Preprocessed image data ready for inference.
- """
- # Read the input image using OpenCV
- self.img = cv2.imread(self.input_image)
- print("image before", self.img)
- # Get the height and width of the input image
- self.img_height, self.img_width = self.img.shape[:2]
- letterbox = LetterBox(new_shape=[img_width, img_height], auto=False, stride=32)
- image = letterbox(image=self.img)
- image = [image]
- image = np.stack(image)
- image = image[..., ::-1].transpose((0, 3, 1, 2))
- img = np.ascontiguousarray(image)
- # n, h, w, c
- image = img.astype(np.float32)
- return image / 255
- def postprocess(self, input_image, output):
- """
- Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs.
- Args:
- input_image (numpy.ndarray): The input image.
- output (numpy.ndarray): The output of the model.
- Returns:
- numpy.ndarray: The input image with detections drawn on it.
- """
- boxes = []
- scores = []
- class_ids = []
- for pred in output:
- pred = np.transpose(pred)
- for box in pred:
- x, y, w, h = box[:4]
- x1 = x - w / 2
- y1 = y - h / 2
- boxes.append([x1, y1, w, h])
- idx = np.argmax(box[4:])
- scores.append(box[idx + 4])
- class_ids.append(idx)
- indices = cv2.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres)
- for i in indices:
- # Get the box, score, and class ID corresponding to the index
- box = boxes[i]
- gain = min(img_width / self.img_width, img_height / self.img_height)
- pad = (
- round((img_width - self.img_width * gain) / 2 - 0.1),
- round((img_height - self.img_height * gain) / 2 - 0.1),
- )
- box[0] = (box[0] - pad[0]) / gain
- box[1] = (box[1] - pad[1]) / gain
- box[2] = box[2] / gain
- box[3] = box[3] / gain
- score = scores[i]
- class_id = class_ids[i]
- if score > 0.25:
- print(box, score, class_id)
- # Draw the detection on the input image
- self.draw_detections(input_image, box, score, class_id)
- return input_image
- def main(self):
- """
- Performs inference using a TFLite model and returns the output image with drawn detections.
- Returns:
- output_img: The output image with drawn detections.
- """
- # Create an interpreter for the TFLite model
- interpreter = tflite.Interpreter(model_path=self.tflite_model)
- self.model = interpreter
- interpreter.allocate_tensors()
- # Get the model inputs
- input_details = interpreter.get_input_details()
- output_details = interpreter.get_output_details()
- # Store the shape of the input for later use
- input_shape = input_details[0]["shape"]
- self.input_width = input_shape[1]
- self.input_height = input_shape[2]
- # Preprocess the image data
- img_data = self.preprocess()
- img_data = img_data
- # img_data = img_data.cpu().numpy()
- # Set the input tensor to the interpreter
- print(input_details[0]["index"])
- print(img_data.shape)
- img_data = img_data.transpose((0, 2, 3, 1))
- scale, zero_point = input_details[0]["quantization"]
- img_data_int8 = (img_data / scale + zero_point).astype(np.int8)
- interpreter.set_tensor(input_details[0]["index"], img_data_int8)
- # Run inference
- interpreter.invoke()
- # Get the output tensor from the interpreter
- output = interpreter.get_tensor(output_details[0]["index"])
- scale, zero_point = output_details[0]["quantization"]
- output = (output.astype(np.float32) - zero_point) * scale
- output[:, [0, 2]] *= img_width
- output[:, [1, 3]] *= img_height
- print(output)
- # Perform post-processing on the outputs to obtain output image.
- return self.postprocess(self.img, output)
- if __name__ == "__main__":
- # Create an argument parser to handle command-line arguments
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "--model", type=str, default="yolov8n_full_integer_quant.tflite", help="Input your TFLite model."
- )
- parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image.")
- parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold")
- parser.add_argument("--iou-thres", type=float, default=0.5, help="NMS IoU threshold")
- args = parser.parse_args()
- # Create an instance of the Yolov8TFLite class with the specified arguments
- detection = Yolov8TFLite(args.model, args.img, args.conf_thres, args.iou_thres)
- # Perform object detection and obtain the output image
- output_image = detection.main()
- # Display the output image in a window
- cv2.imshow("Output", output_image)
- # Wait for a key press to exit
- cv2.waitKey(0)
|