comments: true description: Convert your Ultralytics YOLOv8 models to TensorFlow.js for high-speed, local object detection. Learn how to optimize ML models for browser and Node.js apps.
Deploying machine learning models directly in the browser or on Node.js can be tricky. You'll need to make sure your model format is optimized for faster performance so that the model can be used to run interactive applications locally on the user's device. The TensorFlow.js, or TF.js, model format is designed to use minimal power while delivering fast performance.
The 'export to TF.js model format' feature allows you to optimize your Ultralytics YOLOv8 models for high-speed and locally-run object detection inference. In this guide, we'll walk you through converting your models to the TF.js format, making it easier for your models to perform well on various local browsers and Node.js applications.
Exporting your machine learning models to TensorFlow.js, developed by the TensorFlow team as part of the broader TensorFlow ecosystem, offers numerous advantages for deploying machine learning applications. It helps enhance user privacy and security by keeping sensitive data on the device. The image below shows the TensorFlow.js architecture, and how machine learning models are converted and deployed on both web browsers and Node.js.
Running models locally also reduces latency and provides a more responsive user experience. TensorFlow.js also comes with offline capabilities, allowing users to use your application even without an internet connection. TF.js is designed for efficient execution of complex models on devices with limited resources as it is engineered for scalability, with GPU acceleration support.
Here are the key features that make TF.js a powerful tool for developers:
Cross-Platform Support: TensorFlow.js can be used in both browser and Node.js environments, providing flexibility in deployment across different platforms. It lets developers build and deploy applications more easily.
Support for Multiple Backends: TensorFlow.js supports various backends for computation including CPU, WebGL for GPU acceleration, WebAssembly (WASM) for near-native execution speed, and WebGPU for advanced browser-based machine learning capabilities.
Offline Capabilities: With TensorFlow.js, models can run in the browser without the need for an internet connection, making it possible to develop applications that are functional offline.
Before we dive into the process of exporting YOLOv8 models to the TF.js format, let's explore some typical deployment scenarios where this format is used.
TF.js provides a range of options to deploy your machine learning models:
In-Browser ML Applications: You can build web applications that run machine learning models directly in the browser. The need for server-side computation is eliminated and the server load is reduced.
Node.js Applications:: TensorFlow.js also supports deployment in Node.js environments, enabling the development of server-side machine learning applications. It is particularly useful for applications that require the processing power of a server or access to server-side data.
Chrome Extensions: An interesting deployment scenario is the creation of Chrome extensions with TensorFlow.js. For instance, you can develop an extension that allows users to right-click on an image within any webpage to classify it using a pre-trained ML model. TensorFlow.js can be integrated into everyday web browsing experiences to provide immediate insights or augmentations based on machine learning.
You can expand model compatibility and deployment flexibility by converting YOLOv8 models to TF.js.
To install the required package, run:
!!! Tip "Installation"
=== "CLI"
```bash
# Install the required package for YOLOv8
pip install ultralytics
```
For detailed instructions and best practices related to the installation process, check our Ultralytics Installation guide. While installing the required packages for YOLOv8, if you encounter any difficulties, consult our Common Issues guide for solutions and tips.
Before diving into the usage instructions, it's important to note that while all Ultralytics YOLOv8 models are available for exporting, you can ensure that the model you select supports export functionality here.
!!! Example "Usage"
=== "Python"
```python
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO("yolov8n.pt")
# Export the model to TF.js format
model.export(format="tfjs") # creates '/yolov8n_web_model'
# Load the exported TF.js model
tfjs_model = YOLO("./yolov8n_web_model")
# Run inference
results = tfjs_model("https://ultralytics.com/images/bus.jpg")
```
=== "CLI"
```bash
# Export a YOLOv8n PyTorch model to TF.js format
yolo export model=yolov8n.pt format=tfjs # creates '/yolov8n_web_model'
# Run inference with the exported model
yolo predict model='./yolov8n_web_model' source='https://ultralytics.com/images/bus.jpg'
```
For more details about supported export options, visit the Ultralytics documentation page on deployment options.
Now that you have exported your YOLOv8 model to the TF.js format, the next step is to deploy it. The primary and recommended first step for running a TF.js is to use the YOLO("./yolov8n_web_model") method, as previously shown in the usage code snippet.
However, for in-depth instructions on deploying your TF.js models, take a look at the following resources:
Chrome Extension: Here's the developer documentation for how to deploy your TF.js models to a Chrome extension.
Run TensorFlow.js in Node.js: A TensorFlow blog post on running TensorFlow.js in Node.js directly.
Deploying TensorFlow.js - Node Project on Cloud Platform: A TensorFlow blog post on deploying a TensorFlow.js model on a Cloud Platform.
In this guide, we learned how to export Ultralytics YOLOv8 models to the TensorFlow.js format. By exporting to TF.js, you gain the flexibility to optimize, deploy, and scale your YOLOv8 models on a wide range of platforms.
For further details on usage, visit the TensorFlow.js official documentation.
For more information on integrating Ultralytics YOLOv8 with other platforms and frameworks, don't forget to check out our integration guide page. It's packed with great resources to help you make the most of YOLOv8 in your projects.
Exporting Ultralytics YOLOv8 models to TensorFlow.js (TF.js) format is straightforward. You can follow these steps:
!!! Example "Usage"
=== "Python"
```python
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO("yolov8n.pt")
# Export the model to TF.js format
model.export(format="tfjs") # creates '/yolov8n_web_model'
# Load the exported TF.js model
tfjs_model = YOLO("./yolov8n_web_model")
# Run inference
results = tfjs_model("https://ultralytics.com/images/bus.jpg")
```
=== "CLI"
```bash
# Export a YOLOv8n PyTorch model to TF.js format
yolo export model=yolov8n.pt format=tfjs # creates '/yolov8n_web_model'
# Run inference with the exported model
yolo predict model='./yolov8n_web_model' source='https://ultralytics.com/images/bus.jpg'
```
For more details about supported export options, visit the Ultralytics documentation page on deployment options.
Exporting YOLOv8 models to TensorFlow.js offers several advantages, including:
For a comprehensive overview, see our Integrations with TensorFlow.js.
TensorFlow.js is specifically designed for efficient execution of ML models in browsers and Node.js environments. Here's how it benefits browser-based applications:
Interested in learning more about TF.js? Check out the official TensorFlow.js guide.
Key features of TensorFlow.js include:
For deployment scenarios and more in-depth information, see our section on Deployment Options with TensorFlow.js.
Yes, TensorFlow.js allows the deployment of YOLOv8 models on Node.js environments. This enables server-side machine learning applications that benefit from the processing power of a server and access to server-side data. Typical use cases include real-time data processing and machine learning pipelines on backend servers.
To get started with Node.js deployment, refer to the Run TensorFlow.js in Node.js guide from TensorFlow.