Dockerfile-jetson-jetpack5 2.8 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455
  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. # Builds ultralytics/ultralytics:jetson-jetson-jetpack5 image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
  3. # Supports JetPack5.x for YOLOv8 on Jetson Xavier NX, AGX Xavier, AGX Orin, Orin Nano and Orin NX
  4. # Start FROM https://catalog.ngc.nvidia.com/orgs/nvidia/containers/l4t-pytorch
  5. FROM nvcr.io/nvidia/l4t-pytorch:r35.2.1-pth2.0-py3
  6. # Set environment variables
  7. ENV APP_HOME /usr/src/ultralytics
  8. # Downloads to user config dir
  9. ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf \
  10. https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.Unicode.ttf \
  11. /root/.config/Ultralytics/
  12. # Install linux packages
  13. # g++ required to build 'tflite_support' and 'lap' packages
  14. # libusb-1.0-0 required for 'tflite_support' package when exporting to TFLite
  15. # pkg-config and libhdf5-dev (not included) are needed to build 'h5py==3.11.0' aarch64 wheel required by 'tensorflow'
  16. RUN apt update \
  17. && apt install --no-install-recommends -y gcc git zip unzip wget curl htop libgl1 libglib2.0-0 libpython3-dev gnupg g++ libusb-1.0-0
  18. # Create working directory
  19. WORKDIR $APP_HOME
  20. # Copy contents and assign permissions
  21. COPY . $APP_HOME
  22. RUN git remote set-url origin https://github.com/ultralytics/ultralytics.git
  23. ADD https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt $APP_HOME
  24. # Remove opencv-python from Ultralytics dependencies as it conflicts with opencv-python installed in base image
  25. RUN grep -v "opencv-python" pyproject.toml > temp.toml && mv temp.toml pyproject.toml
  26. # Download onnxruntime-gpu 1.15.1 for Jetson Linux 35.2.1 (JetPack 5.1). Other versions can be seen in https://elinux.org/Jetson_Zoo#ONNX_Runtime
  27. ADD https://nvidia.box.com/shared/static/mvdcltm9ewdy2d5nurkiqorofz1s53ww.whl onnxruntime_gpu-1.15.1-cp38-cp38-linux_aarch64.whl
  28. # Install pip packages manually for TensorRT compatibility https://github.com/NVIDIA/TensorRT/issues/2567
  29. RUN python3 -m pip install --upgrade pip wheel
  30. RUN pip install onnxruntime_gpu-1.15.1-cp38-cp38-linux_aarch64.whl
  31. RUN pip install --no-cache-dir -e ".[export]"
  32. # Usage Examples -------------------------------------------------------------------------------------------------------
  33. # Build and Push
  34. # t=ultralytics/ultralytics:latest-jetson-jetpack5 && sudo docker build --platform linux/arm64 -f docker/Dockerfile-jetson-jetpack5 -t $t . && sudo docker push $t
  35. # Run
  36. # t=ultralytics/ultralytics:latest-jetson-jetpack5 && sudo docker run -it --ipc=host $t
  37. # Pull and Run
  38. # t=ultralytics/ultralytics:latest-jetson-jetpack5 && sudo docker pull $t && sudo docker run -it --ipc=host $t
  39. # Pull and Run with NVIDIA runtime
  40. # t=ultralytics/ultralytics:latest-jetson-jetpack5 && sudo docker pull $t && sudo docker run -it --ipc=host --runtime=nvidia $t