1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889 |
- import os
- import cv2
- import json
- from tqdm import tqdm
- from sklearn.model_selection import train_test_split
- import argparse
- # visdrone2019
- classes = ['pedestrain', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']
- parser = argparse.ArgumentParser()
- parser.add_argument('--image_path', default='',type=str, help="path of images")
- parser.add_argument('--label_path', default='',type=str, help="path of labels .txt")
- parser.add_argument('--save_path', default='data.json', type=str, help="if not split the dataset, give a path to a json file")
- arg = parser.parse_args()
- def yolo2coco(arg):
- print("Loading data from ", arg.image_path, arg.label_path)
- assert os.path.exists(arg.image_path)
- assert os.path.exists(arg.label_path)
-
- originImagesDir = arg.image_path
- originLabelsDir = arg.label_path
- # images dir name
- indexes = os.listdir(originImagesDir)
- dataset = {'categories': [], 'annotations': [], 'images': []}
- for i, cls in enumerate(classes, 0):
- dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'mark'})
-
- # 标注的id
- ann_id_cnt = 0
- for k, index in enumerate(tqdm(indexes)):
- # 支持 png jpg 格式的图片.
- txtFile = f'{index[:index.rfind(".")]}.txt'
- stem = index[:index.rfind(".")]
- # 读取图像的宽和高
- try:
- im = cv2.imread(os.path.join(originImagesDir, index))
- height, width, _ = im.shape
- except Exception as e:
- print(f'{os.path.join(originImagesDir, index)} read error.\nerror:{e}')
- # 添加图像的信息
- if not os.path.exists(os.path.join(originLabelsDir, txtFile)):
- # 如没标签,跳过,只保留图片信息.
- continue
- dataset['images'].append({'file_name': index,
- 'id': stem,
- 'width': width,
- 'height': height})
- with open(os.path.join(originLabelsDir, txtFile), 'r') as fr:
- labelList = fr.readlines()
- for label in labelList:
- label = label.strip().split()
- x = float(label[1])
- y = float(label[2])
- w = float(label[3])
- h = float(label[4])
- # convert x,y,w,h to x1,y1,x2,y2
- H, W, _ = im.shape
- x1 = (x - w / 2) * W
- y1 = (y - h / 2) * H
- x2 = (x + w / 2) * W
- y2 = (y + h / 2) * H
- # 标签序号从0开始计算, coco2017数据集标号混乱,不管它了。
- cls_id = int(label[0])
- width = max(0, x2 - x1)
- height = max(0, y2 - y1)
- dataset['annotations'].append({
- 'area': width * height,
- 'bbox': [x1, y1, width, height],
- 'category_id': cls_id,
- 'id': ann_id_cnt,
- 'image_id': stem,
- 'iscrowd': 0,
- # mask, 矩形是从左上角点按顺时针的四个顶点
- 'segmentation': [[x1, y1, x2, y1, x2, y2, x1, y2]]
- })
- ann_id_cnt += 1
- # 保存结果
- with open(arg.save_path, 'w') as f:
- json.dump(dataset, f)
- print('Save annotation to {}'.format(arg.save_path))
- if __name__ == "__main__":
- yolo2coco(arg)
|