# Ultralytics YOLO 🚀, AGPL-3.0 license import os from pathlib import Path import cv2 import numpy as np import torch from PIL import Image from ultralytics.utils import TQDM, checks class FastSAMPrompt: """ Fast Segment Anything Model class for image annotation and visualization. Attributes: device (str): Computing device ('cuda' or 'cpu'). results: Object detection or segmentation results. source: Source image or image path. clip: CLIP model for linear assignment. """ def __init__(self, source, results, device="cuda") -> None: """Initializes FastSAMPrompt with given source, results and device, and assigns clip for linear assignment.""" if isinstance(source, (str, Path)) and os.path.isdir(source): raise ValueError("FastSAM only accepts image paths and PIL Image sources, not directories.") self.device = device self.results = results self.source = source # Import and assign clip try: import clip except ImportError: checks.check_requirements("git+https://github.com/ultralytics/CLIP.git") import clip self.clip = clip @staticmethod def _segment_image(image, bbox): """Segments the given image according to the provided bounding box coordinates.""" image_array = np.array(image) segmented_image_array = np.zeros_like(image_array) x1, y1, x2, y2 = bbox segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2] segmented_image = Image.fromarray(segmented_image_array) black_image = Image.new("RGB", image.size, (255, 255, 255)) # transparency_mask = np.zeros_like((), dtype=np.uint8) transparency_mask = np.zeros((image_array.shape[0], image_array.shape[1]), dtype=np.uint8) transparency_mask[y1:y2, x1:x2] = 255 transparency_mask_image = Image.fromarray(transparency_mask, mode="L") black_image.paste(segmented_image, mask=transparency_mask_image) return black_image @staticmethod def _format_results(result, filter=0): """Formats detection results into list of annotations each containing ID, segmentation, bounding box, score and area. """ annotations = [] n = len(result.masks.data) if result.masks is not None else 0 for i in range(n): mask = result.masks.data[i] == 1.0 if torch.sum(mask) >= filter: annotation = { "id": i, "segmentation": mask.cpu().numpy(), "bbox": result.boxes.data[i], "score": result.boxes.conf[i], } annotation["area"] = annotation["segmentation"].sum() annotations.append(annotation) return annotations @staticmethod def _get_bbox_from_mask(mask): """Applies morphological transformations to the mask, displays it, and if with_contours is True, draws contours. """ mask = mask.astype(np.uint8) contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) x1, y1, w, h = cv2.boundingRect(contours[0]) x2, y2 = x1 + w, y1 + h if len(contours) > 1: for b in contours: x_t, y_t, w_t, h_t = cv2.boundingRect(b) x1 = min(x1, x_t) y1 = min(y1, y_t) x2 = max(x2, x_t + w_t) y2 = max(y2, y_t + h_t) return [x1, y1, x2, y2] def plot( self, annotations, output, bbox=None, points=None, point_label=None, mask_random_color=True, better_quality=True, retina=False, with_contours=True, ): """ Plots annotations, bounding boxes, and points on images and saves the output. Args: annotations (list): Annotations to be plotted. output (str or Path): Output directory for saving the plots. bbox (list, optional): Bounding box coordinates [x1, y1, x2, y2]. Defaults to None. points (list, optional): Points to be plotted. Defaults to None. point_label (list, optional): Labels for the points. Defaults to None. mask_random_color (bool, optional): Whether to use random color for masks. Defaults to True. better_quality (bool, optional): Whether to apply morphological transformations for better mask quality. Defaults to True. retina (bool, optional): Whether to use retina mask. Defaults to False. with_contours (bool, optional): Whether to plot contours. Defaults to True. """ import matplotlib.pyplot as plt pbar = TQDM(annotations, total=len(annotations)) for ann in pbar: result_name = os.path.basename(ann.path) image = ann.orig_img[..., ::-1] # BGR to RGB original_h, original_w = ann.orig_shape # For macOS only # plt.switch_backend('TkAgg') plt.figure(figsize=(original_w / 100, original_h / 100)) # Add subplot with no margin. plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) plt.margins(0, 0) plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.gca().yaxis.set_major_locator(plt.NullLocator()) plt.imshow(image) if ann.masks is not None: masks = ann.masks.data if better_quality: if isinstance(masks[0], torch.Tensor): masks = np.array(masks.cpu()) for i, mask in enumerate(masks): mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)) masks[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)) self.fast_show_mask( masks, plt.gca(), random_color=mask_random_color, bbox=bbox, points=points, pointlabel=point_label, retinamask=retina, target_height=original_h, target_width=original_w, ) if with_contours: contour_all = [] temp = np.zeros((original_h, original_w, 1)) for i, mask in enumerate(masks): mask = mask.astype(np.uint8) if not retina: mask = cv2.resize(mask, (original_w, original_h), interpolation=cv2.INTER_NEAREST) contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contour_all.extend(iter(contours)) cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2) color = np.array([0 / 255, 0 / 255, 1.0, 0.8]) contour_mask = temp / 255 * color.reshape(1, 1, -1) plt.imshow(contour_mask) # Save the figure save_path = Path(output) / result_name save_path.parent.mkdir(exist_ok=True, parents=True) plt.axis("off") plt.savefig(save_path, bbox_inches="tight", pad_inches=0, transparent=True) plt.close() pbar.set_description(f"Saving {result_name} to {save_path}") @staticmethod def fast_show_mask( annotation, ax, random_color=False, bbox=None, points=None, pointlabel=None, retinamask=True, target_height=960, target_width=960, ): """ Quickly shows the mask annotations on the given matplotlib axis. Args: annotation (array-like): Mask annotation. ax (matplotlib.axes.Axes): Matplotlib axis. random_color (bool, optional): Whether to use random color for masks. Defaults to False. bbox (list, optional): Bounding box coordinates [x1, y1, x2, y2]. Defaults to None. points (list, optional): Points to be plotted. Defaults to None. pointlabel (list, optional): Labels for the points. Defaults to None. retinamask (bool, optional): Whether to use retina mask. Defaults to True. target_height (int, optional): Target height for resizing. Defaults to 960. target_width (int, optional): Target width for resizing. Defaults to 960. """ import matplotlib.pyplot as plt n, h, w = annotation.shape # batch, height, width areas = np.sum(annotation, axis=(1, 2)) annotation = annotation[np.argsort(areas)] index = (annotation != 0).argmax(axis=0) if random_color: color = np.random.random((n, 1, 1, 3)) else: color = np.ones((n, 1, 1, 3)) * np.array([30 / 255, 144 / 255, 1.0]) transparency = np.ones((n, 1, 1, 1)) * 0.6 visual = np.concatenate([color, transparency], axis=-1) mask_image = np.expand_dims(annotation, -1) * visual show = np.zeros((h, w, 4)) h_indices, w_indices = np.meshgrid(np.arange(h), np.arange(w), indexing="ij") indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) show[h_indices, w_indices, :] = mask_image[indices] if bbox is not None: x1, y1, x2, y2 = bbox ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1)) # Draw point if points is not None: plt.scatter( [point[0] for i, point in enumerate(points) if pointlabel[i] == 1], [point[1] for i, point in enumerate(points) if pointlabel[i] == 1], s=20, c="y", ) plt.scatter( [point[0] for i, point in enumerate(points) if pointlabel[i] == 0], [point[1] for i, point in enumerate(points) if pointlabel[i] == 0], s=20, c="m", ) if not retinamask: show = cv2.resize(show, (target_width, target_height), interpolation=cv2.INTER_NEAREST) ax.imshow(show) @torch.no_grad() def retrieve(self, model, preprocess, elements, search_text: str, device) -> int: """Processes images and text with a model, calculates similarity, and returns softmax score.""" preprocessed_images = [preprocess(image).to(device) for image in elements] tokenized_text = self.clip.tokenize([search_text]).to(device) stacked_images = torch.stack(preprocessed_images) image_features = model.encode_image(stacked_images) text_features = model.encode_text(tokenized_text) image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) probs = 100.0 * image_features @ text_features.T return probs[:, 0].softmax(dim=0) def _crop_image(self, format_results): """Crops an image based on provided annotation format and returns cropped images and related data.""" image = Image.fromarray(cv2.cvtColor(self.results[0].orig_img, cv2.COLOR_BGR2RGB)) ori_w, ori_h = image.size annotations = format_results mask_h, mask_w = annotations[0]["segmentation"].shape if ori_w != mask_w or ori_h != mask_h: image = image.resize((mask_w, mask_h)) cropped_boxes = [] cropped_images = [] not_crop = [] filter_id = [] for _, mask in enumerate(annotations): if np.sum(mask["segmentation"]) <= 100: filter_id.append(_) continue bbox = self._get_bbox_from_mask(mask["segmentation"]) # bbox from mask cropped_boxes.append(self._segment_image(image, bbox)) # save cropped image cropped_images.append(bbox) # save cropped image bbox return cropped_boxes, cropped_images, not_crop, filter_id, annotations def box_prompt(self, bbox): """Modifies the bounding box properties and calculates IoU between masks and bounding box.""" if self.results[0].masks is not None: assert bbox[2] != 0 and bbox[3] != 0, "Bounding box width and height should not be zero" masks = self.results[0].masks.data target_height, target_width = self.results[0].orig_shape h = masks.shape[1] w = masks.shape[2] if h != target_height or w != target_width: bbox = [ int(bbox[0] * w / target_width), int(bbox[1] * h / target_height), int(bbox[2] * w / target_width), int(bbox[3] * h / target_height), ] bbox[0] = max(round(bbox[0]), 0) bbox[1] = max(round(bbox[1]), 0) bbox[2] = min(round(bbox[2]), w) bbox[3] = min(round(bbox[3]), h) # IoUs = torch.zeros(len(masks), dtype=torch.float32) bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0]) masks_area = torch.sum(masks[:, bbox[1] : bbox[3], bbox[0] : bbox[2]], dim=(1, 2)) orig_masks_area = torch.sum(masks, dim=(1, 2)) union = bbox_area + orig_masks_area - masks_area iou = masks_area / union max_iou_index = torch.argmax(iou) self.results[0].masks.data = torch.tensor(np.array([masks[max_iou_index].cpu().numpy()])) return self.results def point_prompt(self, points, pointlabel): # numpy """Adjusts points on detected masks based on user input and returns the modified results.""" if self.results[0].masks is not None: masks = self._format_results(self.results[0], 0) target_height, target_width = self.results[0].orig_shape h = masks[0]["segmentation"].shape[0] w = masks[0]["segmentation"].shape[1] if h != target_height or w != target_width: points = [[int(point[0] * w / target_width), int(point[1] * h / target_height)] for point in points] onemask = np.zeros((h, w)) for annotation in masks: mask = annotation["segmentation"] if isinstance(annotation, dict) else annotation for i, point in enumerate(points): if mask[point[1], point[0]] == 1 and pointlabel[i] == 1: onemask += mask if mask[point[1], point[0]] == 1 and pointlabel[i] == 0: onemask -= mask onemask = onemask >= 1 self.results[0].masks.data = torch.tensor(np.array([onemask])) return self.results def text_prompt(self, text): """Processes a text prompt, applies it to existing results and returns the updated results.""" if self.results[0].masks is not None: format_results = self._format_results(self.results[0], 0) cropped_boxes, cropped_images, not_crop, filter_id, annotations = self._crop_image(format_results) clip_model, preprocess = self.clip.load("ViT-B/32", device=self.device) scores = self.retrieve(clip_model, preprocess, cropped_boxes, text, device=self.device) max_idx = scores.argsort() max_idx = max_idx[-1] max_idx += sum(np.array(filter_id) <= int(max_idx)) self.results[0].masks.data = torch.tensor(np.array([annotations[max_idx]["segmentation"]])) return self.results def everything_prompt(self): """Returns the processed results from the previous methods in the class.""" return self.results