# Ultralytics YOLO 🚀, AGPL-3.0 license import glob import math import os import random from copy import deepcopy from multiprocessing.pool import ThreadPool from pathlib import Path from typing import Optional import cv2 import numpy as np import psutil from torch.utils.data import Dataset from ultralytics.data.utils import FORMATS_HELP_MSG, HELP_URL, IMG_FORMATS from ultralytics.utils import DEFAULT_CFG, LOCAL_RANK, LOGGER, NUM_THREADS, TQDM from ultralytics.data.datagenerate import get_image_remove_extra_contour import ultralytics.trainsdk.TrainSdk as TrainSdk class BaseDataset(Dataset): """ Base dataset class for loading and processing image data. Args: img_path (str): Path to the folder containing images. is_train_on_platform (bool): 是否在vinno平台上训练 data (dict, optional): A dataset YAML dictionary. Defaults to None. imgsz (int, optional): Image size. Defaults to 640.\ cache (bool, optional): Cache images to RAM or disk during training. Defaults to False. augment (bool, optional): If True, data augmentation is applied. Defaults to True. hyp (dict, optional): Hyperparameters to apply data augmentation. Defaults to None. prefix (str, optional): Prefix to print in log messages. Defaults to ''. rect (bool, optional): If True, rectangular training is used. Defaults to False. batch_size (int, optional): Size of batches. Defaults to None. stride (int, optional): Stride. Defaults to 32. pad (float, optional): Padding. Defaults to 0.0. single_cls (bool, optional): If True, single class training is used. Defaults to False. classes (list): List of included classes. Default is None. fraction (float): Fraction of dataset to utilize. Default is 1.0 (use all data). Attributes: im_files (list): List of image file paths. labels (list): List of label data dictionaries. ni (int): Number of images in the dataset. ims (list): List of loaded images. npy_files (list): List of numpy file paths. transforms (callable): Image transformation function. """ def __init__( self, img_path, is_train_on_platform=False, data=None, imgsz=640, cache=False, augment=True, hyp=DEFAULT_CFG, prefix="", rect=False, batch_size=16, stride=32, pad=0.5, single_cls=False, classes=None, fraction=1.0, ): """Initialize BaseDataset with given configuration and options.""" super().__init__() self.img_path = img_path self.imgsz = imgsz self.augment = augment self.single_cls = single_cls self.prefix = prefix self.fraction = fraction self.is_train_on_platform = is_train_on_platform self.data = data if self.is_train_on_platform: self.train_or_val_data = "train" if self.augment else "val" self.platform_data_args = self.data['platform_data_args'] self.token = self.platform_data_args["token"] self.extra_contours_args = self.platform_data_args['extra_contours_args'] self.im_files, self.labels, self.crop_boxes, self.crop_contours = self.get_img_files_and_labels() else: self.im_files = self.get_img_files(self.img_path) self.labels = self.get_labels() if isinstance(cache, str): cache = cache.lower() # Cache images if cache == "ram" and not self.check_cache_ram(): cache = False self.npy_files = [Path(f).with_suffix(".npy") for f in self.im_files] if cache: self.cache_images(cache) self.update_labels(include_class=classes) # single_cls and include_class self.ni = len(self.labels) # number of images self.rect = rect self.batch_size = batch_size self.stride = stride self.pad = pad if self.rect: assert self.batch_size is not None self.set_rectangle() # Buffer thread for mosaic images self.buffer = [] # buffer size = batch size self.max_buffer_length = min((self.ni, self.batch_size * 8, 1000)) if self.augment else 0 # Cache images (options are cache = True, False, None, "ram", "disk") self.ims, self.im_hw0, self.im_hw = [None] * self.ni, [None] * self.ni, [None] * self.ni # Transforms self.transforms = self.build_transforms(hyp=hyp) def get_img_files(self, img_path): """Read image files.""" try: f = [] # image files for p in img_path if isinstance(img_path, list) else [img_path]: p = Path(p) # os-agnostic if p.is_dir(): # dir f += glob.glob(str(p / "**" / "*.*"), recursive=True) # F = list(p.rglob('*.*')) # pathlib elif p.is_file(): # file with open(p) as t: t = t.read().strip().splitlines() parent = str(p.parent) + os.sep f += [x.replace("./", parent) if x.startswith("./") else x for x in t] # local to global path # F += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib) else: raise FileNotFoundError(f"{self.prefix}{p} does not exist") im_files = sorted(x.replace("/", os.sep) for x in f if x.split(".")[-1].lower() in IMG_FORMATS) # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib assert im_files, f"{self.prefix}No images found in {img_path}. {FORMATS_HELP_MSG}" except Exception as e: raise FileNotFoundError(f"{self.prefix}Error loading data from {img_path}\n{HELP_URL}") from e if self.fraction < 1: # im_files = im_files[: round(len(im_files) * self.fraction)] num_elements_to_select = round(len(im_files) * self.fraction) im_files = random.sample(im_files, num_elements_to_select) return im_files def update_labels(self, include_class: Optional[list]): """Update labels to include only these classes (optional).""" include_class_array = np.array(include_class).reshape(1, -1) for i in range(len(self.labels)): if include_class is not None: cls = self.labels[i]["cls"] bboxes = self.labels[i]["bboxes"] segments = self.labels[i]["segments"] keypoints = self.labels[i]["keypoints"] j = (cls == include_class_array).any(1) self.labels[i]["cls"] = cls[j] self.labels[i]["bboxes"] = bboxes[j] if segments: self.labels[i]["segments"] = [segments[si] for si, idx in enumerate(j) if idx] if keypoints is not None: self.labels[i]["keypoints"] = keypoints[j] if self.single_cls: self.labels[i]["cls"][:, 0] = 0 def load_image(self, i, rect_mode=True): """Loads 1 image from dataset index 'i', returns (im, resized hw).""" im, f, = self.ims[i], self.im_files[i] if not self.is_train_on_platform: fn = self.npy_files[i] if im is None: # not cached in RAM if self.is_train_on_platform: if self.train_or_val_data == "train": image_data, _, image_name, _ = TrainSdk.get_labeled_file(self.token, f) else: image_data, _, image_name, _ = TrainSdk.get_test_labeled_file(self.token, f) # read image nparr_data = np.frombuffer(image_data, dtype=np.uint8) im = cv2.imdecode(nparr_data, flags=cv2.IMREAD_COLOR) # BGR # 判断是否需要裁图,裁图影响输入图像 if self.extra_contours_args != '': use_orig_image_pixel = self.extra_contours_args['use_orig_image_pixel'] im = get_image_remove_extra_contour(im, self.crop_contours[i], self.crop_boxes[i], use_orig_image_pixel) else: if fn.exists(): # load npy try: im = np.load(fn) except Exception as e: LOGGER.warning(f"{self.prefix}WARNING ⚠️ Removing corrupt *.npy image file {fn} due to: {e}") Path(fn).unlink(missing_ok=True) im = cv2.imread(f) # BGR else: # read image im = cv2.imread(f) # BGR if im is None: raise FileNotFoundError(f"Image Not Found {f}") h0, w0 = im.shape[:2] # orig hw if rect_mode: # resize long side to imgsz while maintaining aspect ratio r = self.imgsz / max(h0, w0) # ratio if r != 1: # if sizes are not equal w, h = (min(math.ceil(w0 * r), self.imgsz), min(math.ceil(h0 * r), self.imgsz)) im = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR) elif not (h0 == w0 == self.imgsz): # resize by stretching image to square imgsz im = cv2.resize(im, (self.imgsz, self.imgsz), interpolation=cv2.INTER_LINEAR) # Add to buffer if training with augmentations if self.augment: self.ims[i], self.im_hw0[i], self.im_hw[i] = im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized self.buffer.append(i) if len(self.buffer) >= self.max_buffer_length: j = self.buffer.pop(0) self.ims[j], self.im_hw0[j], self.im_hw[j] = None, None, None return im, (h0, w0), im.shape[:2] return self.ims[i], self.im_hw0[i], self.im_hw[i] def cache_images(self, cache): """Cache images to memory or disk.""" b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes fcn = self.cache_images_to_disk if cache == "disk" else self.load_image with ThreadPool(NUM_THREADS) as pool: results = pool.imap(fcn, range(self.ni)) pbar = TQDM(enumerate(results), total=self.ni, disable=LOCAL_RANK > 0) for i, x in pbar: if cache == "disk": b += self.npy_files[i].stat().st_size else: # 'ram' self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i) b += self.ims[i].nbytes pbar.desc = f"{self.prefix}Caching images ({b / gb:.1f}GB {cache})" pbar.close() def cache_images_to_disk(self, i): """Saves an image as an *.npy file for faster loading.""" f = self.npy_files[i] if not f.exists(): np.save(f.as_posix(), cv2.imread(self.im_files[i]), allow_pickle=False) def check_cache_ram(self, safety_margin=0.5): """Check image caching requirements vs available memory.""" b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes n = min(self.ni, 30) # extrapolate from 30 random images for _ in range(n): im = cv2.imread(random.choice(self.im_files)) # sample image ratio = self.imgsz / max(im.shape[0], im.shape[1]) # max(h, w) # ratio b += im.nbytes * ratio**2 mem_required = b * self.ni / n * (1 + safety_margin) # GB required to cache dataset into RAM mem = psutil.virtual_memory() cache = mem_required < mem.available # to cache or not to cache, that is the question if not cache: LOGGER.info( f'{self.prefix}{mem_required / gb:.1f}GB RAM required to cache images ' f'with {int(safety_margin * 100)}% safety margin but only ' f'{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, ' f"{'caching images ✅' if cache else 'not caching images ⚠️'}" ) return cache def set_rectangle(self): """Sets the shape of bounding boxes for YOLO detections as rectangles.""" bi = np.floor(np.arange(self.ni) / self.batch_size).astype(int) # batch index nb = bi[-1] + 1 # number of batches s = np.array([x.pop("shape") for x in self.labels]) # hw ar = s[:, 0] / s[:, 1] # aspect ratio irect = ar.argsort() self.im_files = [self.im_files[i] for i in irect] self.labels = [self.labels[i] for i in irect] ar = ar[irect] # Set training image shapes shapes = [[1, 1]] * nb for i in range(nb): ari = ar[bi == i] mini, maxi = ari.min(), ari.max() if maxi < 1: shapes[i] = [maxi, 1] elif mini > 1: shapes[i] = [1, 1 / mini] self.batch_shapes = np.ceil(np.array(shapes) * self.imgsz / self.stride + self.pad).astype(int) * self.stride self.batch = bi # batch index of image def __getitem__(self, index): """Returns transformed label information for given index.""" return self.transforms(self.get_image_and_label(index)) def get_image_and_label(self, index): """Get and return label information from the dataset.""" label = deepcopy(self.labels[index]) # requires deepcopy() https://github.com/ultralytics/ultralytics/pull/1948 label.pop("shape", None) # shape is for rect, remove it label["img"], label["ori_shape"], label["resized_shape"] = self.load_image(index) label["ratio_pad"] = ( label["resized_shape"][0] / label["ori_shape"][0], label["resized_shape"][1] / label["ori_shape"][1], ) # for evaluation if self.rect: label["rect_shape"] = self.batch_shapes[self.batch[index]] return self.update_labels_info(label) def __len__(self): """Returns the length of the labels list for the dataset.""" return len(self.labels) def update_labels_info(self, label): """Custom your label format here.""" return label def build_transforms(self, hyp=None): """ Users can customize augmentations here. Example: ```python if self.augment: # Training transforms return Compose([]) else: # Val transforms return Compose([]) ``` """ raise NotImplementedError def get_labels(self): """ Users can customize their own format here. Note: Ensure output is a dictionary with the following keys: ```python dict( im_file=im_file, shape=shape, # format: (height, width) cls=cls, bboxes=bboxes, # xywh segments=segments, # xy keypoints=keypoints, # xy normalized=True, # or False bbox_format="xyxy", # or xywh, ltwh ) ``` """ raise NotImplementedError def get_img_files_and_labels(self): """ 默认的yolo是在基类的get_img_files得到im_files,在继承的YOLODataset的get_labels得到labels 平台上使用时,im_files和labels同时返回,因此可以重写该函数,无需修改get_img_files和get_labels Note: Ensure outputs are im_files, all_labels, crop_boxes, crop_contours: im_files 所有文件名的list all_labels 所有label信息组成dict的list,dict格式如下: ```python dict( im_file=im_file, shape=shape, # format: (height, width) cls=cls, bboxes=bboxes, # xywh segments=segments, # xy keypoints=keypoints, # xy normalized=True, # or False bbox_format="xyxy", # or xywh, ltwh ) ``` crop_boxes 所有可能需要的裁图框的list crop_contours 所有可能需要的裁图轮廓的list """ raise NotImplementedError