import os import cv2 import json from tqdm import tqdm from sklearn.model_selection import train_test_split import argparse # visdrone2019 classes = ['pedestrain', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor'] parser = argparse.ArgumentParser() parser.add_argument('--image_path', default='',type=str, help="path of images") parser.add_argument('--label_path', default='',type=str, help="path of labels .txt") parser.add_argument('--save_path', default='data.json', type=str, help="if not split the dataset, give a path to a json file") arg = parser.parse_args() def yolo2coco(arg): print("Loading data from ", arg.image_path, arg.label_path) assert os.path.exists(arg.image_path) assert os.path.exists(arg.label_path) originImagesDir = arg.image_path originLabelsDir = arg.label_path # images dir name indexes = os.listdir(originImagesDir) dataset = {'categories': [], 'annotations': [], 'images': []} for i, cls in enumerate(classes, 0): dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'mark'}) # 标注的id ann_id_cnt = 0 for k, index in enumerate(tqdm(indexes)): # 支持 png jpg 格式的图片. txtFile = f'{index[:index.rfind(".")]}.txt' stem = index[:index.rfind(".")] # 读取图像的宽和高 try: im = cv2.imread(os.path.join(originImagesDir, index)) height, width, _ = im.shape except Exception as e: print(f'{os.path.join(originImagesDir, index)} read error.\nerror:{e}') # 添加图像的信息 if not os.path.exists(os.path.join(originLabelsDir, txtFile)): # 如没标签,跳过,只保留图片信息. continue dataset['images'].append({'file_name': index, 'id': stem, 'width': width, 'height': height}) with open(os.path.join(originLabelsDir, txtFile), 'r') as fr: labelList = fr.readlines() for label in labelList: label = label.strip().split() x = float(label[1]) y = float(label[2]) w = float(label[3]) h = float(label[4]) # convert x,y,w,h to x1,y1,x2,y2 H, W, _ = im.shape x1 = (x - w / 2) * W y1 = (y - h / 2) * H x2 = (x + w / 2) * W y2 = (y + h / 2) * H # 标签序号从0开始计算, coco2017数据集标号混乱,不管它了。 cls_id = int(label[0]) width = max(0, x2 - x1) height = max(0, y2 - y1) dataset['annotations'].append({ 'area': width * height, 'bbox': [x1, y1, width, height], 'category_id': cls_id, 'id': ann_id_cnt, 'image_id': stem, 'iscrowd': 0, # mask, 矩形是从左上角点按顺时针的四个顶点 'segmentation': [[x1, y1, x2, y1, x2, y2, x1, y2]] }) ann_id_cnt += 1 # 保存结果 with open(arg.save_path, 'w') as f: json.dump(dataset, f) print('Save annotation to {}'.format(arg.save_path)) if __name__ == "__main__": yolo2coco(arg)